首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2127篇
  免费   299篇
  国内免费   165篇
化学   1587篇
晶体学   26篇
力学   105篇
综合类   7篇
数学   238篇
物理学   628篇
  2023年   34篇
  2022年   37篇
  2021年   51篇
  2020年   60篇
  2019年   87篇
  2018年   75篇
  2017年   57篇
  2016年   100篇
  2015年   111篇
  2014年   120篇
  2013年   158篇
  2012年   188篇
  2011年   210篇
  2010年   129篇
  2009年   108篇
  2008年   154篇
  2007年   123篇
  2006年   145篇
  2005年   109篇
  2004年   98篇
  2003年   63篇
  2002年   57篇
  2001年   27篇
  2000年   25篇
  1999年   32篇
  1998年   24篇
  1997年   29篇
  1996年   36篇
  1995年   15篇
  1994年   10篇
  1993年   8篇
  1992年   14篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1985年   7篇
  1984年   10篇
  1981年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1969年   2篇
  1968年   2篇
  1962年   1篇
  1960年   1篇
  1938年   1篇
排序方式: 共有2591条查询结果,搜索用时 15 毫秒
1.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
2.
Understanding of the aromatic properties and magnetically induced current densities of highly conjugated chromophores is important when designing molecules with strongly delocalized electronic structure. Linear extension of the triphyrin(2.1.1) skeleton with an annelated benzo[b]heterocycle fragment modifies the aromatic character by extending the electron delocalization pathway. Two-electron reduction leads to an antiaromatic triphyrin(2.1.1) ring and an aromatic benzo[b]heterocycle subunit. Current-density calculations provide detailed information about the observed pathways and their strengths.  相似文献   
3.
Fan  Shuhua  Wang  Yongli  Wang  Xian 《Crystallography Reports》2018,63(3):428-432

The swine major histocompatibility complex (MHC) class I molecules are also called swine leukocyte antigen (SLA), and most of the highly polymorphic SLA genes are associated with swine diseases. However, the well documented structural reports on swine MHC I molecules remain quite limited. In order to clarify the structural characteristics of the Chinese heishan wild boar MHC class I molecule, SLA-3*0202 and swine β2-microglobulin (sβ2m) with a KMNTQFTAV nonapeptide derived from Influenza A virus Hemagglutinin protein (IAV-HA) were assembled and crystallized. The crystal diffracted at 1.55 Å resolution and belonged to the sp. gr. C121, with the unit-cell parameters a = 206.46 Å, b = 41.47 Å, c = 106.74 Å. The Matthews coefficient and solvent content were calculated to be 2.30 Å3 Da–1 and 46.64%, respectively. The availability of the structure, which is being solved by molecular replacement, will provide new insights into swine MHC I presenting IAV peptides.

  相似文献   
4.
Journal of Statistical Physics - We construct for the first time examples of non-frustrated, two-body, infinite-range, one-dimensional classical lattice–gas models without periodic...  相似文献   
5.
Yuan  Cheng  Qin  Yi  Zhang  Mi  Zhang  Huifen  Jiao  Shiyun  Li  Baocai 《Chromatographia》2015,78(19):1283-1292

To establish a new method of testing and evaluating the quality of refined montan wax (RMW), digital color and GC fingerprint technology were introduced and applied. CIE Lab color mode was used to digitize the exterior colors of RMW, and the score obtained through a fitting function was also used to reflect its quality. It is shown that they were in complete accord with the human visual perception trend. The GC fingerprint was used to characterize the internal chemical information of RMW, and the composition of its internal features was reflected through the relative retention time (RRT) and relative peak area (RPA) values. It is shown that there was a high degree of similarity between the fingerprints, while certain differences also existed. This can be used to implement effective application of RMW to aspects such as quality control, adulteration identification, and origin attributions.

  相似文献   
6.
Fe–Sn–O mixed oxides were synthesized and used as catalysts for Baeyer–Villiger oxidation of cyclohexanone, which showed both high catalytic activity and selectivity. X‐ray powder diffraction and scanning electron microscopy suggested that the Fe–Sn–O catalysts had a tetragonal structure with a grain size of 29.3 nm. An ε‐caprolactone yield as high as 98.8% was obtained in a small‐scale experiment (5 mmol of cyclohexanone). In a scale‐up test (20 mmol of cyclohexanone), the cyclohexanone conversion and ε‐caprolactone yield were 96.7 and 96.5%, respectively. In addition, the catalysts can be reused five times without any major decline in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
This study investigated vitamin K1 (VK1) distribution following intravenous vitamin K1–fat emulsion (VK1–FE) administration and compared it with that after VK1 injection. Rats were intravenously injected with VK1–FE or VK1. The organ and tissue VK1 concentrations were determined using high‐performance liquid chromatography method at 0.5, 2 and 4 h to determine distribution, equilibrium and elimination phases, respectively. In the VK1–FE group, the plasma, heart and spleen VK1 concentrations decreased over time. However, other organs like liver, lung, kidney, muscle and testis, reached peak VK1 concentrations at 2 h. In the VK1 injection group, the liver VK1 concentrations were significantly higher than those in other organs at the three time points. However, VK1 concentrations in the other organs peaked at 2 h. In addition, in VK1–FE group, the heart, spleen and lung VK1 concentrations were significantly higher than those in the VK1 injection group at the three time points, and the liver VK1 concentration was significantly higher than that in the VK1 injection group at 4 h. The VK1 amount was greatest in the liver compared with the other organs. Thus, the liver is the primary organ for VK1 distribution. The distribution of VK1 is more rapid when injected as VK1–FE than as VK1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications.The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier.F-based etching can be self-terminated after removing SiN,leaving the AlGaN barrier in the gate region.With this in-situ SiN and thin barrier etch-stop structure,the short channel effect can be suppressed,meanwhile achieving highly precisely controlled and low damage etching process.The device shows a maximum drain current of 1022 mA/mm,a peak transconductance of 459 mS/mm,and a maximum oscillation frequency(fmax)of 248 GHz.  相似文献   
10.
Silicoaluminophosphate zeolite (SAPO-34) has been attracting increasing attention due to its excellent form selection and controllability in the chemical industry, as well as being one of the best industrial catalysts for methanol-to-olefin (MTO) reaction conversion. However, as a microporous molecular sieve, SAPO-34 easily generates carbon deposition and rapidly becomes inactivated. Therefore, it is necessary to reduce the crystal size of the zeolite or to introduce secondary macropores into the zeolite crystal to form a hierarchical structure in order to improve the catalytic effect. In this review, the synthesis methods of conventional SAPO-34 molecular sieves, hierarchical SAPO-34 molecular sieves and nanosized SAPO-34 molecular sieves are introduced, and the properties of the synthesized SAPO-34 molecular sieves are described, including the phase, morphology, pore structure, acid source, and catalytic performance, in particular with respect to the synthesis of hierarchical SAPO-34 molecular sieves. We hope that the review can provide guidance to the preparation of the SAPO-34 catalysts, and stimulate the future development of high-performance hierarchical SAPO-34 catalysts to meet the growing demands of the material and chemical industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号