首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   24篇
化学   280篇
晶体学   2篇
力学   7篇
数学   40篇
物理学   79篇
  2023年   1篇
  2022年   6篇
  2021年   11篇
  2020年   8篇
  2019年   5篇
  2018年   1篇
  2017年   6篇
  2016年   13篇
  2015年   16篇
  2014年   12篇
  2013年   27篇
  2012年   23篇
  2011年   27篇
  2010年   19篇
  2009年   11篇
  2008年   29篇
  2007年   34篇
  2006年   23篇
  2005年   22篇
  2004年   21篇
  2003年   13篇
  2002年   12篇
  2001年   12篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有408条查询结果,搜索用时 31 毫秒
1.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
2.
The use of single-atom metals (SAM) as catalysts of energy conversion reactions is a recent topic, which has gained popularity in the last two decades. Transition metal dichalcogenides emerged as important electrocatalysts since it was discovered that their chalcogenide edge sites are active towards the electrocatalytic hydrogen evolution reaction (HER) and could also serve as supports for other metals within the same applications. Currently, several groups have reported a novel metal?chalcogenide arrangement, with the possibility of isolating metals at specific sites on chalcogenides to enhance their properties resulting in a synergistic effect in which both chalcogenide and single-atom metal features are exploited, either as promoters or active sites. Theoretical studies have been the basis of these reports.  相似文献   
3.
In this work, we describe the efficient use of improved directions of negative curvature for the solution of bound-constrained nonconvex problems. We follow an interior-point framework, in which the key point is the inclusion of computational low-cost procedures to improve directions of negative curvature obtained from a factorisation of the KKT matrix. From a theoretical point of view, it is well known that these directions ensure convergence to second-order KKT points. As a novelty, we consider the convergence rate of the algorithm with exploitation of negative curvature information. Finally, we test the performance of our proposal on both CUTEr/st and simulated problems, showing empirically that the enhanced directions affect positively the practical performance of the procedure.  相似文献   
4.
The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.  相似文献   
5.
The reactions of the tert-butyldimethylsilylated acyloins of five-, six- and seven-membered rings with the lithium reagents of benzyltrimethylsilane, thiophenoxymethyltrimethylsilane and tri-methylsilyl acetonitrile were studied. These reactions favor formation of the substituted (Z) exo methylidene silyl ethers in moderate yields.  相似文献   
6.
7.
Gold nanoparticles capped with simple adenosine derivatives can form colloidal aggregates in nonpolar solvents. Theoretical calculations indicate the formation of organic channels by the supramolecular assembly of the nanoparticles by means of hydrogen bonds between the adenine moieties. The aggregates were only negligibly sensitive to nPrOH, iPrOH, and tBuOH, whereas some showed a similar response to MeOH and EtOH, and others showed high selectivity toward MeOH. DNA nucleoside derivatives (1‐(2‐deoxy‐β‐D ‐ribofuranosyl)‐5‐methyluracil and 2′,3′‐O‐isopropylideneadenosine) as well as thymine and other aromatic compounds such as pyrene derivatives (pyrene, 1‐chloropyrene, 1‐hydroxypyrene, (1‐pyrenyl)methanol, and 2‐hydroxynapthalene) did not induce disassembly of the nanoparticle aggregates. Data suggest that the nucleoside channels allow access to alcohols according to their size, and an efficient interaction between the alcohol and the adenine units destabilizes the hydrogen bonds, which eventually leads to nanoparticle disassembly.  相似文献   
8.
The utility of organoboranes in the synthesis of a wide variety of functional groups is now well established.1 There have been, however, only a limited number of reports where an organoborane containing a β-functionalized carbon was utilized in organic synthesis. Part of the reason for this is the difficulty in preparing β-functional organoboranes and their tendency to undergo elimination under a variety of reaction conditions.2 Those β-functionalized organoboranes utilized synthetically, which we could find in the literature are the β-ethoxy3, 1, and β-carboethoxyvinyl-boranes4, 2, of Zweifel and coworkers and the trans-β-tert-butyldimethylsilyloxy organoborane, 3, of Corey and Ravindranathan,5 who proposed this system as a potential precursor to prostanoids.  相似文献   
9.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
10.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号