首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   72篇
  国内免费   1篇
化学   888篇
晶体学   2篇
力学   24篇
数学   201篇
物理学   220篇
  2023年   32篇
  2022年   17篇
  2021年   27篇
  2020年   55篇
  2019年   64篇
  2018年   29篇
  2017年   29篇
  2016年   67篇
  2015年   60篇
  2014年   47篇
  2013年   54篇
  2012年   100篇
  2011年   89篇
  2010年   52篇
  2009年   33篇
  2008年   59篇
  2007年   75篇
  2006年   69篇
  2005年   72篇
  2004年   53篇
  2003年   26篇
  2002年   22篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1996年   11篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   7篇
  1983年   6篇
  1981年   3篇
  1980年   7篇
  1979年   9篇
  1976年   12篇
  1975年   6篇
  1973年   10篇
  1969年   3篇
  1968年   3篇
  1934年   3篇
  1932年   3篇
  1922年   2篇
排序方式: 共有1335条查询结果,搜索用时 218 毫秒
1.
2.
We establish a theory of Q -valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q , and to establish a first general partial regularity theorem for every p in any dimension and codimension . © 2020 Wiley Periodicals LLC.  相似文献   
3.
4.
5.
The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas‐phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)]? (X=F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum‐chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)]? is the most acidic gas‐phase anion, whereas in actual protonation experiments [H(B12Cl12)]? is the most potent gas‐phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects.  相似文献   
6.
Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L−1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.  相似文献   
7.
8.
Lithuanian Mathematical Journal - We present upper bounds of the integral $$ {\int}_{-\infty}^{\infty }{\left|x\right|}^l\left|\mathrm{P}\left\{{Z}_N0\left({S}_N{X}_1+\dots +{X}_N\right) $$ of...  相似文献   
9.
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.  相似文献   
10.
The changes of technological properties of albumin-based hydrogels induced by increasing degrees of post-translational modification of the protein are reported. Maillard-type modification of amino acids arginine and lysine of albumin is achieved through glyoxal as an α-dicarbonyl compound. The degrees of modification are fine-tuned using different molar ratios of glyoxal. Hydrogels are thermally induced by heating highly concentrated precursor solutions above the protein's denaturation temperature. While the post-translational modifications are determined and quantified with mass spectrometry, continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy shed light on the protein fatty acid binding capacity and changes thereof in solution and in the gel state. The viscoelastic behavior is characterized as a measure of the physical strength of the hydrogels. On the nanoscopic level, the modified albumins in low concentration solution reveal lower binding capacities with increasing degrees of modification. On the contrary, in the gel state, the binding capacity remains constant at all degrees of modifications. This indicates that the loss of fatty acid binding capacity for individual albumin molecules is partially compensated by new binding sites in the gel state, potentially formed by modified amino acids. Such, albumin glycation offers a fine-tuning method of technological and nanoscopic properties of these gels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号