首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30658篇
  免费   1179篇
  国内免费   244篇
化学   20428篇
晶体学   275篇
力学   1062篇
综合类   11篇
数学   2866篇
物理学   7439篇
  2023年   159篇
  2022年   128篇
  2021年   530篇
  2020年   505篇
  2019年   510篇
  2018年   391篇
  2017年   376篇
  2016年   836篇
  2015年   728篇
  2014年   925篇
  2013年   1707篇
  2012年   2200篇
  2011年   2437篇
  2010年   1474篇
  2009年   1283篇
  2008年   1994篇
  2007年   1874篇
  2006年   1771篇
  2005年   1662篇
  2004年   1440篇
  2003年   1141篇
  2002年   1105篇
  2001年   761篇
  2000年   679篇
  1999年   396篇
  1998年   294篇
  1997年   311篇
  1996年   333篇
  1995年   304篇
  1994年   323篇
  1993年   325篇
  1992年   301篇
  1991年   235篇
  1990年   175篇
  1989年   159篇
  1988年   169篇
  1987年   150篇
  1986年   115篇
  1985年   193篇
  1984年   137篇
  1983年   108篇
  1982年   150篇
  1981年   116篇
  1979年   102篇
  1978年   111篇
  1977年   116篇
  1976年   120篇
  1975年   122篇
  1974年   100篇
  1973年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
2.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   
3.
4.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
5.
In this study, the combination of parameters required for optimal extraction of anti-oxidative components from the Chinese lotus (CLR) and Malaysian lotus (MLR) roots were carefully investigated. Box–Behnken design was employed to optimize the pH (X1: 2–3), extraction time (X2: 0.5–1.5 h) and solvent-to-sample ratio (X3: 20–40 mL/g) to obtain a high flavonoid yield with high % DPPHsc free radical scavenging and Ferric-reducing power assay (FRAP). The analysis of variance clearly showed the significant contribution of quadratic model for all responses. The optimal conditions for both Chinese lotus (CLR) and Malaysian lotus (MLR) roots were obtained as: CLR: X1 = 2.5; X2 = 0.5 h; X3 = 40 mL/g; MLR: X1 = 2.4; X2 = 0.5 h; X3 = 40 mL/g. These optimum conditions gave (a) Total flavonoid content (TFC) of 0.599 mg PCE/g sample and 0.549 mg PCE/g sample, respectively; (b) % DPPHsc of 48.36% and 29.11%, respectively; (c) FRAP value of 2.07 mM FeSO4 and 1.89 mM FeSO4, respectively. A close agreement between predicted and experimental values was found. The result obtained succinctly revealed that the Chinese lotus exhibited higher antioxidant and total flavonoid content when compared with the Malaysia lotus root at optimum extraction condition.  相似文献   
6.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
7.
The nonlinear frequency response analysis (NFRA) can be seen as an extension of electrochemical impedance spectroscopy. NFRA gives a full and detailed representation of the system response and can establish a connection between model parameters and the experimentally observed phenomena. In this article, different theoretical NFRA approaches and the most recent application examples are discussed. A simple electrochemical example is used to showcase the benefits and disadvantages of analyzing the system response by using different approaches. In addition, it was shown how to extract experimental harmonic values and analyze them.  相似文献   
8.
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by 31P cross‐polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid‐state NMR experiments. A 31P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the 31P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the 31P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β‐tubulin (E‐site) of the microtubules. It was found that most of the GDPs were present as GDP‐Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
10.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号