首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   10篇
化学   193篇
晶体学   3篇
力学   2篇
物理学   47篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   17篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   14篇
  2007年   20篇
  2006年   20篇
  2005年   7篇
  2004年   14篇
  2003年   18篇
  2002年   12篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有245条查询结果,搜索用时 31 毫秒
1.
Journal of Radioanalytical and Nuclear Chemistry - Extraction chromatography flow-sheet employing octyl(phenyl)-N,N-diisobutylcarbonoylmethylphosphine oxide and bis(2-ethylhexyl) hydrogen phosphate...  相似文献   
2.
Recently, we developed a convenient microfluidic droplet generation device based on vacuum‐driven fluid manipulation with a piezoelectric diaphragm micropump. In the present study built on our previous work, we investigate the influence of settings applied to the piezoelectric pump, such as peak‐to‐peak drive voltage (Vp‐p) and wave frequency, on droplet generation characteristics. Stepwise adjustments to the drive voltage in ±10‐Vp‐p increments over the range of 200?250 Vp‐p during droplet creation revealed that the droplet generation rate could be reproducibly controlled at a specific drive voltage. The droplet generation rate switched within <0.5 s after the input of a new voltage. Although the droplet generation rate depended on the drive voltage, this setting had almost no influence on droplet size. The frequency over the selected range (50?60 Hz) did not markedly influence the droplet generation rate or droplet size. We show that the current fluid manipulation system can be conveniently used for both droplet generation and for rapid droplet reading, which is required in many microfluidic‐based applications.  相似文献   
3.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
4.
5.
Conjugated polymer nanoparticles based on poly[9,9‐bis(2‐ethylhexyl)fluorene] and poly[N‐(2,4,6‐trimethylphenyl)‐N,N‐diphenylamine)‐4,4′‐diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2′‐bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye‐coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle‐dye hybrids. It is proposed that the excited state electron transfer from the electron‐rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed‐electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir‐based triplet emitting dye as the guest.

  相似文献   

6.
7.
The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non‐structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand‐assisted formation of loop–loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G–G mismatches in double‐stranded DNA, we successfully demonstrated the formation of both inter‐ and intra‐molecular NCT6‐assisted complex of two RNA hairpin loops. NCT6 selectively bound to the two hairpin loops containing (CGG)3 in the loop region. Native polyacrylamide gel electrophoresis analysis of two doubly‐labeled RNA hairpin loops clearly showed the formation of intermolecular NCT6‐assisted loop–loop complex. Förster resonance energy‐transfer studies of RNA constructs containing two hairpin loops, in which each hairpin was labeled with Alexa488 and Cy3 fluorophores, showed the conformational change of the RNA constructs upon binding of NCT6. These experimental data showed that NCT6 simultaneously bound to two hairpin RNAs at the loop region, and can induce the conformational change of the RNA molecule. These data strongly support that NCT6 functions as molecular glue for two hairpin RNAs.  相似文献   
8.
A terthiazole‐based molecular switch associating 6π electrocyclization, excited state intramolecular proton transfer (ESIPT), and strong metal binding capability was prepared. The photochemical and photophysical properties of this molecule and of the corresponding nickel and copper complexes were thoroughly investigated by steady‐state and ultrafast absorption spectroscopy and rationalized by DFT/TDDFT calculations. The switch behaves as a biphotochrome with time‐dependent photochemical outcome and displays efficient ESIPT‐based fluorescence photoswitching. Both photochemical reactions are suppressed by nickel or copper metalation, and the main factors contributing to the quenching of the electrocyclization are discussed.  相似文献   
9.
Modulation of biological networks assembled by diverse interactions among biologically active molecules has provided a platform for innovative biotechnologies. Here, we report RNA aptamers that bind to a photoresponsive peptide (KRAzR; Lys‐Arg‐azobenzene‐Arg) containing azobenzene chromophore, which can change its structure by photoirradiation. Aptamers were identified after 10 cycles of an in vitro selection procedure starting with a DNA library containing a 70 nt random region. Surface plasmon resonance (SPR) analysis demonstrated that interactions between aptamers and KRAzR were fully controlled by appropriate photoirradiation to the SPR sensor chip. Upon irradiation of 360 nm on the KRAzR‐immobilized surface, the binding of each aptamer to the surface was significantly decreased. Subsequent photoirradiation of the same surface with 430 nm restored the aptamer binding to the surface. We also observed that direct photoirradiation of the aptamer–peptide complex on a gold surface actively promoted dissociation of the complex. Furthermore, a doped reselection method was applied to acquire structural and sequence information of aptamer 66. From a data analysis of the conserved region and the mutation frequency, we were able to select a plausible secondary structure among three candidates predicted by computational folding simulation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号