首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   67篇
  国内免费   58篇
化学   685篇
晶体学   4篇
力学   34篇
综合类   1篇
数学   127篇
物理学   227篇
  2023年   26篇
  2022年   14篇
  2021年   33篇
  2020年   42篇
  2019年   41篇
  2018年   29篇
  2017年   33篇
  2016年   32篇
  2015年   46篇
  2014年   47篇
  2013年   53篇
  2012年   52篇
  2011年   69篇
  2010年   47篇
  2009年   41篇
  2008年   44篇
  2007年   54篇
  2006年   45篇
  2005年   39篇
  2004年   31篇
  2003年   24篇
  2002年   26篇
  2001年   12篇
  2000年   17篇
  1999年   18篇
  1998年   13篇
  1997年   12篇
  1996年   16篇
  1995年   17篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   4篇
  1987年   4篇
  1985年   6篇
  1984年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1971年   2篇
  1915年   2篇
  1911年   2篇
  1910年   3篇
  1905年   2篇
  1904年   2篇
  1902年   2篇
排序方式: 共有1078条查询结果,搜索用时 218 毫秒
1.
Gawad  Dina A.  Elnaggar  Mai M.  Belal  Tarek S. 《Chromatographia》2022,85(7):617-628
Chromatographia - The present work deals with the optimization, validation and application of a versatile HPLC–DAD method for concurrent estimation of nine antimicrobials and proton pump...  相似文献   
2.

The adsorption and photocatalytic degradation of Ethyl methylphosphonate (EMPA) on powdery TiO2 film has experimentally investigated using attenuated total reflection-infrared Fourier transform spectroscopy (ATR-FTIR) in ambient condition. Characteristic IR frequency as P-O-C vibration mode as EtO was observed by EMPA adsorbed at the surface of TiO2. By TiO2 photocatalysis, the adsorbed EMPA was decomposed to methyl phosphonic acid and phosphoric acid. The increment of IR intensity of which is assigned to Ti–O-P-O-Ti of EMPA was accompanied with increasing the IR peak intensity assigned to MPA. About that, we suggest that the appearance of the Ti–O-P-O-Ti of EMPA by the TiO2 photocatalysis is regarded as acceleration of the hydrolysis of EMPA by the surface OH groups of TiO2. The plausible adsorption structure and the photocatalytic reaction mechanism of EMPA at the surface of TiO2 photocatalyst were elucidated.

  相似文献   
3.
Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.  相似文献   
4.
The different contributions of the interfacial capacitance are identified in the case of passive materials or thin protective coatings deposited on the electrode surface. The method is based on a graphical analysis of the EIS results to determine both the passive-film capacitance in the high-frequency domain and the double-layer capacitance in the low-frequency domain. The proposed analysis is shown to be independent of the physicochemical origins of the frequency dispersion of the interfacial capacitances which results, from an analysis point of view of the experimental results, in the use of a constant-phase element However, for a correct evaluation of the thin-film properties such as its thickness, the high-frequency data must be corrected for the double-layer contribution. In particular, it is shown that if the double-layer capacitance gives a frequency-dispersed response, it is necessary to correct the high-frequency part for the double-layer constant-phase elements. This is first demonstrated on synthetic data and then used for the determination of the thickness of thin oxide film formed on Al in neutral pH solution.  相似文献   
5.
The Dirac‐type time‐frequency distribution (TFD), regarded as ideal TFD, has long been desired. It, until the present time, cannot be implemented, due to the fact that there has been no appropriate representation of signals leading to such TFD. Instead, people have been developing other types of TFD, including the Wigner and the windowed Fourier transform types. This paper promotes a practical passage leading to a Dirac‐type TFD. Based on the proposed function decomposition method, viz., adaptive Fourier decomposition, we establish a rigorous and practical Dirac‐type TFD theory. We do follow the route of analytic signal representation of signals founded and developed by Garbo, Ville, Cohen, Boashash, Picinbono, and others. The difference, however, is that our treatment is theoretically throughout and rigorous. To well illustrate the new theory and the related TFD, we include several examples and experiments of which some are in comparison with the most commonly used TFDs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
Two novel characterizations of self-decomposable Bernstein functions are provided. The first one is purely analytic, stating that a function \(\varPsi \) is the Bernstein function of a self-decomposable probability law \(\pi \) on the positive half-axis if and only if alternating sums of \(\varPsi \) satisfy certain monotonicity conditions. The second characterization is of probabilistic nature, showing that \(\varPsi \) is a self-decomposable Bernstein function if and only if a related d-variate function \(C_{\psi ,d}\), \(\psi :=\exp (-\varPsi )\), is a d-variate copula for each \(d \ge 2\). A canonical stochastic construction is presented, in which \(\pi \) (respectively \(\varPsi \)) determines the probability law of an exchangeable sequence of random variables \(\{U_k\}_{k\in {\mathbb {N}}}\) such that \((U_1,\ldots ,U_d) \sim C_{\psi ,d}\) for each \(d \ge 2\). The random variables \(\{U_k\}_{k\in {\mathbb {N}}},\) are i.i.d. conditioned on an increasing Sato process whose law is characterized by \(\varPsi \). The probability law of \(\{U_k\}_{k \in {\mathbb {N}}}\) is studied in quite some detail.  相似文献   
7.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   
8.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   
9.
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR ( pGNR ) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor ( P1 ) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds ( 1 a , 1 b ) containing the same pore size as the shortcuts of pGNR , are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π–π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.  相似文献   
10.
Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号