首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A photonic glucose biosensor incorporating a vertically coupled polymeric microring resonator was proposed and accomplished. The concentration of a glucose solution was estimated by observing the shift in the resonant wavelength of the resonator. For achieving higher sensitivity the contrast between the effective refractive index of the polymeric waveguide and that of the analyte was minimized. Actually, the effective refractive index of the polymeric waveguide (n = ∼1.390) was substantially close to that (n = ∼1.333) of the fresh solution with no glucose. The fabricated resonator sensor with the free spectral range of 0.66 nm yielded a sensitivity of ∼280 pm/(g/dL), which corresponds to ∼200 nm/RIU (refractive index units) as a refractometric sensor, and provided a detection limit of refractive index change on the order of 10−5 RIU.  相似文献   

2.
表面等离子体共振(SPR)光学传感器能实现生物医学的快速、 无标记、 高精度检测,是生物化学分析的重要方法。 研制了基于波长调制型的Kretschmann结构表面等离子体共振(SPR)生物传感系统,研究了在体溶液传感方式下的传感性能。 利用不同浓度的乙醇和乙二醇溶液进行体溶液传感测试。 实验结果表明,在折射率低时共振波长对折射率变化响应的灵敏度低,但响应的线性度高;随着折射率增大,共振波长对折射率的响应变化的灵敏度提高。 在1.407 0~1.430 RIU折射率范围内,灵敏度高达11 487 nm·RIU-1。 传感器的共振波长的稳定性为0.213 8 nm,可分辨最小折射率趋近10-6 RIU。 所研制的波长调制型表面等离子共振传感器操作简单、 灵敏度高、 检测范围大,可实现浓度极低生物标记物的有效检测,在化学、 生物传感领域有重要的应用。  相似文献   

3.
基于表面等离子体共振的微结构光纤传感器具有高灵敏、免标记和实时监控等优点.如今,由于此类传感器广泛应用于食品安全控制、环境检测、生物分子分析物检测等诸多领域而受到大量研究.然而,目前所报道的绝大多数此类传感器只能应用于可见光或近中红外传感.因此,对可应用于中红外传感的表面等离子体共振微结构光纤传感器的研究是一项极具挑战性的工作.基于此,本文设计了一种可以工作在近红外和中红外区域的新型高灵敏表面等离子体共振微结构光纤传感器.传感器采用双芯单样品通道结构,该结构不仅可以消除相邻样品通道间的相互干扰和提高传感器的信噪比,还可以在超宽带波长范围内实现高灵敏检测.采用全矢量有限元法对其传感特性进行了系统的研究,研究结果表明:当待测样品折射率分布在1.423—1.513范围内时,传感器不仅可以在1.548—2.796μm的超宽带波长范围内进行工作,而且其平均灵敏度高达13964 nm/RIU.此外,传感器的最高波长灵敏度和折射率分辨率分别为17900 nm/RIU,5.59×10–7 RIU.  相似文献   

4.
A highly sensitive photonic crystal fiber based on the surface plasmon resonance (PCF-SPR) biosensor for the detection of the density alteration in non-physiological cells (DANCE) is described. Human acute leukemia cells are determined by the discontinuous sucrose gradient centrifugation (DSGC) in which the cells are separated into several bands. The separated cells with different intracellular densities and refractive indexes (RI) ranging from 1.3342 to 1.3344 are distinguished in situ by means of the differential transmission spectrum. The biosensor shows a maximum amplitude sensitivity of 2000?nm/RIU and resolution as high as 5?×?10?5?RIU. According to the wavelength interrogation method, a maximum spectral sensitivity of 9000?nm/RIU in the sensing range between 1.33 and 1.53 is achieved, corresponding to a resolution as high as 1.11?×?10?5?RIU for the biosensor. The proposed PCF-SPR biosensor has promising application in biological and biochemical detection.  相似文献   

5.
赵华君 《中国物理 B》2012,21(8):87104-087104
The surface plasmon resonance gas sensor is presented for refractive index detection using nano-cavity antenna array.The gas sensor monitors the changes of the refractive index by measuring the spectral shift of the resonance dip,for modulating the wavelength of incident light.It is demonstrated that minute changes in the refractive index of a medium close to the surface of a metal film,owing to a shift in the resonance dip of the wavelength,can be detected.The average detection sensitivity is about 3200 nm/RIU(refractive index units),which is more than twice that of a metal grating-based gas sensor.The reflectivity of the surface plasmon resonance dip is only ~ 0.03%,and the full widths at half maximum(FWHMs) of bandwidth of the angle and wavelength are ~ 0.20° and 4.71nm,respectively.  相似文献   

6.
We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolutlon of the SPIt sensor is predicted to be 2.2 × 10^-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.  相似文献   

7.
We propose a special refractive index sensor design based on a photonic crystal fiber. Two analyte channels are introduced, with one analyte channel coated with gold layer and the other one without gold layer. A hybrid resonance method is used in the sensor to achieve a large dynamic index range, where surface plasmon resonance occurs when the analyte index is lower than that of the fiber material, while the core mode couples with the resonant mode of the adjacent analyte-filled cylinder when the analyte index is larger than the fiber material. When considering fluorinated polymer fibers, a broad index range of analyte refractive index from 1.25 to 1.45 with high sensitivity can be achieved. The maximal sensitivities reach 1.4 × 104 nm/RIU and 2.7 × 104 nm/RIU respectively when refractive index is in the range of 1.25 to 1.383 and 1.383 to 1.45. The sensor characteristics, make this simple sensor very interesting for detecting a wide range of fluid's refractive index or chemical agent concentration.  相似文献   

8.
We numerically designed a plasmonic refractive index sensor with high sensitivity and tunable optical feature based on two metal-insulator-metal bus waveguides connecting with the central-coupled rectangular and circular ring resonators, including silver (Ag) baffles. In the design process, Ag baffles' influence on transmittance spectrum, magnetic and electric field distributions, surface power flow intensity, energy streamlines, and sensor performance are investigated using the finite element method. The proposed structure can use as a high precision plasmonic refractive index sensor for refractive index in the increment range of 0.01. The maximum sensitivity can reach 3400 nm/RIU (RIU is a refractive index unit), which remarkably increases the sensitivity of 1.36 times compared to the case without Ag baffles. Besides, the figure of merit and quality factor can achieve 36.00 and 42.28, respectively. The sensitivity and figure of merit can be increased by adding the Ag baffles in the proposed plasmonic sensor system, generating an additional gap plasmon resonance mode that cannot find in a typical case.  相似文献   

9.
A refractive index (RI) sensor based on the two-dimensional photonic crystal is presented. The sensor is formed by a point-defect resonant cavity in the sandwiched waveguide structure. The transmission spectrums of the sensor with different ambient refractive indices ranging from n = 1.0 to n = 1.6 are calculated. The calculation results show that a change in ambient RI of Δn = 0.001 is apparent, the sensitivity of the sensor (Δλn) is achieved with 330 nm/RIU (when lattice constant a = 440 nm), where RIU means the refractive index unit; and the transmission efficiency in the RI range of 1.0-1.6 can reach about 40% to 70%, that make the detection of spectrum easy and feasible. The properties of the sensor are analyzed and calculated using the plane-wave expansion (PWE) method and simulated using the finite-difference time-domain (FDTD) method.  相似文献   

10.
Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper,we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain(FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength(intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU(refractive index unit) and a resolution of about 10-3RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections.  相似文献   

11.
A novel surface plasmon resonance photonic sensor is proposed using an index-guided microstructured fiber with an analyte channel introduced into the central core. Compared with the previous designs of porous fiber core, variation of the signal amplitude with exterior refractive index is demonstrated to be contrary to that of the sensitivity in the proposed fiber, contributing to optimized detecting accuracy over a large refractive index range of 1.33 to 1.42. By carefully choosing the central channel size, the analyte-filled core can achieve narrower resonance spectral width and higher signal to noise ratio (SNR) than the air-filled core. Sensor responses are also studied in this paper based on two spectral interrogation methods, including monitoring single resonance shift and measuring change in the resonance separation. For both methods, response linearity has been improved considerably through partially filling the core with analyte. The maximal sensitivity reaches 10− 6 refractive index unit (RIU). The linear sensing performance along with the broad measurement range is very promising in the application of the proposed sensor as sensitive refractometer.  相似文献   

12.
In this paper, a surface plasmon resonance fiber sensor based on gold nano-column array instead of gold film is designed and optimized. The finite element method is used to optimize the diameter of the nano-gold column under the consideration of figure of merit, which relates to the sensitivity, resonance wavelength and resonance intensity. The optimized sensor has 70 nm gold nano-column coated on a side polished single mode fiber. The results show that the average sensitivity reaches 5318 nm/RIU when the environmental refractive index changing from 1.33 to 1.39 RIU, which is much higher than those in the conventional surface plasmon resonance structure. The optimizes design will serve a vital foundation to the fabrication of high performance fiber optic surface plasmon resonance sensors based on nano metallic structure.  相似文献   

13.
A differential detection technique combined with a surface plasmon resonance technique is proposed for refractive index variation measurement. The experimental results demonstrate that our system can attain a resolution of 1.2 × 10?5 RIU (refractive index unit). In addition, a method for two-dimensional detection of the refractive index variation is demonstrated. The system is free from the influence of optical source fluctuation, and can improve the measurement sensitivity.  相似文献   

14.
We propose a plasmonic structure to obtain polarization-insensitive localized surface plasmon resonance (LSPR) sensor, which consists of cross-slit metallic periodic arrays embedded in the background material. Numerical simulation illustrates that the mechanism of the LSPR sensor is based on the shift of the Fabry–Perot cavity mode resonance peak in the spectrum as the change of the dielectric material properties for the near fields. And one of the transmission dips of the structure is very sensitive to the background materials; the structure could gain the sensitivity (nm/RIU) more than 500 nm/RIU. Meanwhile, the structure holds great potential to achieve high-performance sensors in practical application due to polarization-insensitive virtue.  相似文献   

15.
基于波导光栅共振原理和古斯-汉欣(Goos-Hänchen)位移理论,提出一种表面覆膜波导光栅传感结构,并研究其共振光谱特性。通过在光栅表面涂覆低折射率聚合物功能膜层优化其共振光谱特性,选用多孔硅作为待测物承载单元,可以使光学探针更充分地接触待测样本,从而提高其检测性能。根据波导光栅共振相位条件,建立了共振波长和样本折射率之间的数学模型,通过检测共振位置的改变进而对样本浓度进行检测。研究表明,该表面覆膜波导光栅传感结构具有线型对称和窄线宽的共振光谱特性,可实现高品质因数(Q值)和高灵敏度的传感特性,其Q值为1 488,对折射率的检测极限可达5×10-4 RIU(RIU为折射率单位)。通过检测不同浓度的葡萄糖溶液对其传感特性进行验证分析,结果表明,共振波长与葡萄糖溶液浓度之间具有良好的线性关系,对葡萄糖溶液的检测灵敏度为1.12nm/1%,证明了该表面覆膜波导光栅传感结构的有效性,可以用于对低浓度样本溶液的实时动态监测,并为波长调制型光学折射率传感器的研究提供理论指导。  相似文献   

16.
曹玉珍  马金英  刘琨  黄翔东  江俊峰  王涛  薛萌  刘铁根 《物理学报》2017,66(7):74202-074202
基于生物样品检测对折射率传感的迫切需求,构建一种全光纤表面等离子体共振(surface plasmon resonance,SPR)系统,并针对其设计了基于全相位滤波技术的SPR特征波长传感解调算法.基于系统仿真,理论计算了光纤SPR传感器的折射率传感灵敏度.采用全相位滤波技术提取光纤SPR传感器透射光谱的特征波长,理论推导了全相位滤波器的解析表达式.实验结果表明,使用本算法的光纤SPR传感器折射率传感灵敏度为1640.4 nm/RIU,折射率检测的分辨率是7.36×10~(-4)RIU,与传统方法相比,有效提高了系统的检测精度和抗光源扰动性能,降低了实验成本.  相似文献   

17.
A phase-shifted fiber Bragg grating(PS-FBG) based on a microchannel was proposed and realized by combining the pointby-point scanning method with chemical etching. The PS-FBG is composed of a fiber Bragg grating(FBG) and a microchannel through the fiber core. The microchannel can introduce phase shift into the FBG. What is more important is that it exposes the fiber core to the external environment. The phase shift peak is sensitive to the liquid refractive index, and it shows a linear refractive index response wavelength and intensity sensitivity of 2.526 nm/RIU and-111 d B/RIU, respectively.Therefore, such gratings can be used as sensors or tunable filters.  相似文献   

18.
朱剑凯  王向贤  祁云平  余建立 《中国物理 B》2022,31(1):14205-014205
We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.  相似文献   

19.
刘瑾  杨海马 《应用光学》2018,39(2):246-251
为了解决传统的强度检测型波导激励的表面等离子体共振传感器灵敏度不高的缺点,研究平面波导激励的介质膜-金属-被测介质的可激发修正的长程表面等离子体波结构。采用离子交换的方法制备折射率可用费米函数拟合的平面波导,研究了离子交换时间对平面波导的模数及等效折射率等特性的影响,为激励波导的优化设计提供有效依据。采用制备的平面波导激励介质膜-金属-被测介质的非对称结构,研究金属材质、介质膜厚和金属膜厚等因素对修正的长程表面等离子体波特性的影响,对被测溶液的折射率进行检测。实验结果表明,其灵敏度为传统的强度检测型表面等离子体共振传感器的6倍,并且具有较好的线性关系。  相似文献   

20.
《中国物理 B》2021,30(10):104210-104210
Developing a convenient method that can be routinely applied for ascertaining proportions of different vegetable oils employed in commercial blended edible oils remains a significant challenge. We address this issue by proposing a novel method for detecting volume fraction of different oils based on the fact that these oils are optically transparent and have slightly different indices of refraction at a given temperature and wavelength. Accordingly, we develop a highly sensitive sensor for measuring the index of refraction of oil blends based on Fano resonance spectra obtained using a metal-insulatormetal(MIM) waveguide structure comprising a gapped straight waveguide coupled with two L-shaped resonators. The index of refraction sensitivity and figure of merit of the structure are calculated based on modeling using the finite element method, and the waveguide structure is accordingly optimized by adjusting the different geometric parameters to achieve a high-quality Fano resonance spectrum. The optimized structure achieves an ultra-high refractive index sensitivity of 770 nm/RIU in terms of a refractive index unit(RIU) of 1. Moreover, a highly stable linear relationship is obtained between the refractive index of mixed edible oils and the resonance wavelength. Experimental results demonstrate that the proposed structure can detect slight changes in the volume fractions of the components in blended oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号