首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   7篇
  国内免费   3篇
化学   93篇
力学   10篇
数学   43篇
物理学   12篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   10篇
  2013年   18篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  1997年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有158条查询结果,搜索用时 46 毫秒
1.
Structural Chemistry - This is an analysis report on the use of density functional theory (DFT) to investigate the potentials of pristine and amino acid–functionalized C4B32 borospherenes in...  相似文献   
2.
Molecular Diversity - In current research, benzazepine derivative is synthesized via a new process of four-component reaction of isatin or its derivatives, α-haloketones, activated acetylenic...  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - In this study, the numerical analysis of energy and exergy has been performed for a gas turbine cycle coupled with an ORC cycle. Validation of current...  相似文献   
4.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Herein, polydopamine-coated Fe3O4 spheres were synthesized using a very simple, easy, cost-effective, efficient, and fast method. First, magnetic nanoparticles (Fe3O4) were synthesized and were followed by accommodating polydopamine on the surface of the prepared Fe3O4. The prepared polydopamine-coated Fe3O4 spheres were utilized as a sorbent in magnetic solid phase extraction of gemfibrozil and warfarin (as the model analytes). The extracted model analytes were desorbed by a suitable organic solvent and were analyzed by high-performance liquid chromatography. Under optimized condition, the linearity of the method was in the range of 0.1–200.0 μg/L for the selected analytes in water. The limits of detection were calculated to be in the range of 0.026–0.055 μg/L for warfarin and gemfibrozil, respectively. The limits of quantification were calculated to be in the range of 0.089–0.185 μg/L. The inter-day and intra-day relative standard deviations were determined to be in the range of 1.4%–3.3% in three concentrations in order to calculate the method precision. Furthermore, the enrichment factors were found to be 78 and 81 for warfarin and gemfibrozil, respectively. Moreover, the calculated absolute recoveries were between 78% and 81%. The obtained recoveries indicated that the method was useful and applicable in complicated real samples.  相似文献   
6.
Magnetically separable nano core–shell Fe3O4@Cu(OH)x with 22 % Cu content was prepared by the addition of sodium hydroxide to a mixture of CuCl2·2H2O and nano Fe3O4 in water. Characterization of the impregnated copper hydroxide was carried out by X-ray fluorescence (XRF), X-ray diffraction (XRD) atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), value stream mapping (VSM) and Brunauer–Emmett–Teller (BET) analysis. The core–shell nanocatalyst exhibited the excellent catalytic activity toward reduction of various nitro compounds to the corresponding amines with NaBH4. All reactions were carried out in H2O (55–60 °C) within 3–15 min to afford amines in high to excellent yields. Reusability of core–shell Cu(OH)x catalyst was examined 9 times without significant loss of its catalytic activity.  相似文献   
7.
For a finite group G, the intersection graph of G which is denoted by Γ(G) is an undirected graph such that its vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when HK ≠ 1. In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of Aut(Γ(G)).  相似文献   
8.
In this work, we study three-electron magnetic susceptibility in quantum dots under Rashba spin-orbit interaction (SOI) and magnetic field by an analytical methodology. The Hamiltonian of the system is separated to center of mass and relative terms using the Jacobi transformations and the hyperspherical coordinates. By solving Schrodinger equation, energy levels and thereby the susceptibility are calculated using canonical ensemble. At zero temperature, the magnetization reduces with increasing magnetic field with and without Rashba SOI in three-electron-quantum dot without electron-electron (e-e) interaction. Also, SOI slightly changes the magnetization for three-electron-quantum dot without e-e interaction. At nonzero temperature, the magnetization shows a paramagnetic peak when the magnetic field increases. This peak position changes under the SOI. In the presence of e-e interaction, the susceptibility enhances with raising magnetic field and it shows a maximum. The susceptibility at low magnetic field is negative and then it becomes positive. The susceptibility with e-e interaction and without SOI is always diamagnetic and its magnitude reduces with enhancing magnetic field. The susceptibility shows a transition between diamagnetic and paramagnetic with e-e interaction and SOI.  相似文献   
9.
An efficient route for the synthesis of 2‐amino‐4H‐benzo[g]chromenes via a three‐component coupling reaction of aldehydes, malononitrile and 2‐hydroxy‐1,4‐naphthaquinone in the presence of Zn( L ‐proline)2 is reported. High yields, short reaction times, non‐toxicity and recyclability of the catalyst, and easy work‐up are the main merits of this protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号