首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
力学   1篇
物理学   1篇
  2022年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Structural Chemistry - This is an analysis report on the use of density functional theory (DFT) to investigate the potentials of pristine and amino acid–functionalized C4B32 borospherenes in...  相似文献   
2.
A fast and reliable method was developed for the selective separation and preconcentration of Cu2+ ions using homogeneous liquid-liquid extraction using a novel benzo-substituted macrocyclic diamide, 5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioatriazacyclo-pentadecine-3,11(4 H,12 H)-dione, as a selective complexing agent. An aqueous solution of Zonyl FSA (FSA) was used as a phase-separation agent at pH 4.5. Electrothermal atomic absorption spectrometry was used for Cu2+ determination after preconcentration. The influences of pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the ligand and the effect of diverse ions were investigated. Factorial design and response surface methods were used for the optimization purposes. Under the optimum experimental conditions, 50 ng of Cu2+ in 5 mL aqueous sample could be extracted quantitatively into 76 µL of the sediment phase. The maximum preconcentration factor was 65. The calibration curve was linear in the concentration range 0.2 to 4.0 µg L?1. The detection limit and relative standard deviation were 4 ng L?1 and 4.6%, respectively. The method was successfully applied to the extraction and determination of Cu2+ in natural water samples.  相似文献   
3.
Microstructure, electrical conductivity, and rheological properties of nanocomposites based on isotactic polypropylene (iPP) containing semiconductor nanoparticles of TiO2 were studied. Compatibilized and uncompatibilized nanocomposites containing a wide range of TiO2 concentrations (up to 15 vol%) were prepared by melt compounding in a twin-screw extruder via a masterbatch method. An anhydride-modified PP (AMPP) was used as the compatibilizer. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and image analysis techniques were utilized to study the morphology evolution in the samples. Analyzing the results of direct current (DC) electrical conductivity measurements showed a lower percolation threshold for the uncompatibilized samples, compared to the compatibilized ones. In order to estimate the percolation threshold, linear and nonlinear melt-state viscoelastic properties of the samples were studied. Liquid-solid transition and nonterminal behavior of the uncompatibilized samples were observed at relatively lower range of TiO2 loading, compared to the compatibilized samples. It was an indication of lower rheological percolation threshold in the uncompatibilized nanocomposites which was in agreement with the electrical percolation threshold. Scaling analysis of strain sweep tests above the percolation thresholds of the nanocomposites resulted in a lower fractal dimension for the uncompatibilized samples.  相似文献   
4.
The acidity constants of three new aminobenzoic acid derivatives were determined using potentiometric and spectrophotometric methods in 0.10 M aqueous potassium nitrate solution as supporting electrolyte. The potentiometric data and UV–Vis absorption spectra of solutions were recorded in the course of their pH-metric titration with a standard base solution. The protolytic equilibrium constants, concentration distribution diagrams and number of components involved have been calculated. The relative pKa values for three acids were also calculated using ab initio quantum mechanical method at the HF/6-31G** level of theory in combination with CPCM continuum solvation method. The influence of substituents on the ionization constants of the studied molecular structures was investigated. The satisfactory agreement between the experimentally derived and theoretically calculated pKa values provides solid support for the acid–base reactions proposed in this work.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号