首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   49篇
  国内免费   5篇
化学   781篇
晶体学   3篇
力学   16篇
数学   129篇
物理学   143篇
  2023年   6篇
  2022年   5篇
  2021年   24篇
  2020年   24篇
  2019年   15篇
  2018年   15篇
  2017年   7篇
  2016年   37篇
  2015年   28篇
  2014年   42篇
  2013年   41篇
  2012年   62篇
  2011年   86篇
  2010年   43篇
  2009年   46篇
  2008年   82篇
  2007年   67篇
  2006年   69篇
  2005年   59篇
  2004年   53篇
  2003年   27篇
  2002年   36篇
  2001年   21篇
  2000年   14篇
  1999年   8篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   9篇
  1992年   6篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   10篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1970年   4篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1940年   1篇
排序方式: 共有1072条查询结果,搜索用时 484 毫秒
1.
Journal of Solid State Electrochemistry - In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with...  相似文献   
2.
Herein we evaluate the influence of an electric field on the coupling of two delocalized electrons in the mixed‐valence polyoxometalate (POM) [GeV14O40]8? (in short V14) by using both a t‐J model Hamiltonian and DFT calculations. In absence of an electric field the compound is paramagnetic, because the two electrons are localized on different parts of the POM. When an electric field is applied, an abrupt change of the magnetic coupling between the two delocalized electrons can be induced. Indeed, the field forces the two electrons to localize on nearest‐neighbors metal centers, leading to a very strong antiferromagnetic coupling. Both theoretical approaches have led to similar results, emphasizing that the sharp spin transition induced by the electric field in the V14 system is a robust phenomenon, intramolecular in nature, and barely influenced by small changes on the external structure.  相似文献   
3.
The mechanism and energetics of CO, 1‐hexene, and 1‐hexyne substitution from the complexes (SBenz)2[Fe2(CO)6] (SBenz=SCH2Ph) ( 1 ‐CO), (SBenz)2[Fe2(CO)52‐1‐hexene)] ( 1 ‐(η2‐1‐hexene)), and (SBenz)2[Fe2(CO)52‐1‐hexyne)] ( 1 ‐(η2‐1‐hexyne)) were studied by using time‐resolved infrared spectroscopy. Exchange of both CO and 1‐hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate‐determining step in both cases is assumed to be the rotation of the Fe(CO)2L (L=CO or 1‐hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1‐hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN1) and associative (SN2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (μ‐pdt)[Fe(CO)3]2 (pdt=S(CH2)3S) underscores the unique characteristics of a three‐atom S?S linker in the active site of diiron hydrogenases.  相似文献   
4.
Different molecular strategies have been carefully evaluated to produce solid-state luminescence enhancement (SLE) in compounds that show dark states in solution. A set of α-phenylstyrylarene derivatives with a butterfly shape have been designed and synthesised, for the first time, with the aim of improving the solid-state fluorescence emission of their parent styrylarene compounds. Although these butterfly molecules are not fluorescent in solution, one of them (1,2,4,5-tetra(α-phenylstyryl)benzene) exhibits a fluorescence quantum yield as high as 68 % in a drop-cast sample and 31 % in its crystalline form. In contrast, 1,3,5-tris(α-phenylstyryl)benzene and 4,6-bis(α-phenylstyryl)pyrimidine do not show SLE. A range of fluorescence spectroscopy experiments and DFT calculations were carried out to unravel the origin of different photophysical behaviour of these compounds in the solid state. The results indicate that a rational strategy to control the SLE effect in luminogens depends on a delicate balance between molecular properties and inter-/intramolecular interactions in the solid state.  相似文献   
5.
An automatic titration method is reported to resolve ternary mixtures of transition metals (Pb2+, Cd2+ and Cu2+) employing electronic tongue detection and a reduced number of pre‐defined additions of EDTA titrant. Sensors used were PVC membrane selective electrodes with generic response to heavy‐metals, plus an artificial neural network response model. Detection limits obtained were ca. 1 mg L?1 for the three target ions and reproducibilities 3.0 % for Pb2+, 4.1 % for Cd2+ and 5.2 % for Cu2+. The system was applied to contaminated soil samples and high accuracy was obtained for the determination of Pb2+. In the determination Cd2+ and Cu2+, sample matrix showed a significant effect.  相似文献   
6.
The current technology of air‐filtration materials for protection against highly toxic chemicals, that is, chemical‐warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self‐cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal–organic framework (MOF) materials to develop advanced self‐detoxifying adsorbents of chemical‐warfare agents containing hydrolysable P? F, P? O, and C? Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air‐permeation properties of the textiles with the self‐detoxifying properties of the MOF material.  相似文献   
7.
8.
We present a systematic density functional theory (DFT) study of the structure and catalytic activity of group 10 (Ni, Pd, Pt) and group 11 (Cu, Ag, Au) coinage metal nanoribbons. These infinite, periodic, quasi‐one‐dimensional structures are conceptually important as intermediates between small metal clusters and close‐packed metal surfaces, and have been shown experimentally to be practical catalysts. We find that nanoribbons have significantly higher predicted H2 dissociation activity than close‐packed metal surfaces consistent with their lower coordination numbers. Computed periodic trends are reasonable, with late transition states and low barriers for H2 dissociation over late group 10 nanoribbons, suggesting their promise as practical catalysts. These trends are consistent with the isolated nanoribbons' computed molecular electrostatic potentials. Calculations also predict nearly linear Brønsted–Evans–Polanyi relationships between the nanoribbons' H2 dissociation energies and dissociation barriers. We also test new meta‐generalized gradient approximation (GGA) and hybrid DFT approximations for H2 dissociation over these nanoribbons. These new functionals increase the (generally underestimated) dissociation barriers predicted by standard GGAs, motivating their continued application in surface chemistry. © 2015 Wiley Periodicals, Inc.  相似文献   
9.
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.  相似文献   
10.
The coordination of ruthenium(II) complexes to anionic oxygen-based donors are very rare. This study describes a simple, one-pot method for obtaining [ruthenium(II)(trithiacyclononane)(curcumin)(S-DMSO)]Cl (1) in 37% yield. The structural characterization of complex 1 by elemental analysis, FT-IR, 1-D and 2-D NMR, ESI+-MS as well as UV–vis and fluorescence spectroscopies are presented. The DNA-melting temperature (Tm) assay shows that salmon sperm DNA (smDNA) in the presence of complex 1 has a higher melting temperature, with ΔTm = 7.4 °C, while in the presence of curcumin the melting temperature remains unaltered. The in vitro cytotoxic activities of curcumin and complex 1 were investigated using the tumor human prostate cell line, PC-3, and the healthy cell line, PNT-2. Complex 1 is innocuous toward normal prostate epithelial cells and, whereas curcumin is toxic, with inhibition rates of ca. 35 and 65% at 50 and 80 μM, respectively. On the tumor cell line PC-3, complex 1 did not cause viability changes, whereas curcumin exhibited dose-dependent inhibition, with ca. 73% inhibition at the highest concentration tested, i.e. 80 μM. This study suggests that coordination with the trithiacyclononane ruthenium(II) scaffold stabilizes the photochemical properties of curcumin and strongly changes its biologic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号