首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   22篇
  国内免费   4篇
化学   483篇
晶体学   29篇
力学   10篇
数学   31篇
物理学   93篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   12篇
  2019年   20篇
  2018年   22篇
  2017年   18篇
  2016年   27篇
  2015年   12篇
  2014年   21篇
  2013年   65篇
  2012年   44篇
  2011年   50篇
  2010年   33篇
  2009年   35篇
  2008年   34篇
  2007年   38篇
  2006年   37篇
  2005年   30篇
  2004年   23篇
  2003年   19篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
  1967年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有646条查询结果,搜索用时 46 毫秒
1.
Journal of Solid State Electrochemistry - Nanostructured electrode materials for supercapacitors have attracted research interest due to their high power density and long cycle life. Herein, porous...  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - Low thermal conductivity is a primary issue in the development of efficient heat transfer fluids and materials required for the thermal management of...  相似文献   
3.
Transition Metal Chemistry - Metal complexes 1–9 have been synthesized by reacting the benzothiazole–pyrazole derivative ligands (L1, L2 and L3) with the metal precursors of ruthenium...  相似文献   
4.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
The Nickel (II) complexes [Ni(Cl)2(metf)(o-phen)] (1), [Ni(Cl)2(metf)(opda)] (2) , [Ni(Cl)2(metf)(en)] (3) , [Ni(Cl)2(metf)(2,2'-bipy)] (4) , (metf = metformin, o-phen = ortho-phenanthroline, opda = ortho-phenylenediamine, en = ethylenediamine, 2–2′ bipy = 2–2′ bipyridyl) were synthesized and characterized using LC–MS, elemental analysis, molar conductance measurements, TGA-DTA, IR spectroscopy, magnetic moment measurements and electronic spectroscopy. The central Ni2+ was found to be in octahedral geometry. The DNA interaction of these complexes have been studied by UV–visible absorption studies, fluorescence emission technique and viscosity measurement. The complexes showed absorption hyperchromism in UV–visible spectra with calf thymus DNA. The binding constants from UV–visible absorption studies were 7.42 × 104, 0.74 × 104, 3.19 × 104, 5.9 × 104 M−1 for 1 , 2 , 3 and 4 , respectively and Stern-Volmer quenching constants from fluorescence studies were 0.16, 0.41, 0.23, 0.18, respectively. Viscosity measurements revealed that the binding of the complexes with DNA could be surface binding, mainly due to groove binding. The highest DNA cleavage activity of the complexes is recorded for complex 1 . The complexes were docked in to B-DNA sequence, 5′(D*AP*CP*CP*GP*AP*CP* GP*TP*CP*GP*GP*T)-3′ retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software. C Docker Intectraction energy of 1 , 2 , 3 and 4 complexes is 32.027, 31.427, 35.393 and 30.521 respectively. The highest docking score is seen for complex 3 .  相似文献   
6.
Carbonaceous nanomaterials and their derivatives have been inspired tremendous enthusiasm in the scientific community. They have been excogitated as the encouraging attributes and the qualified dispersed phase to develop multi-functional composites. Particularly, graphene and carbon nanotube (anisotropic fillers) have gained substantial research interest owing to their promising characteristics. This highlights an innovative technique to synthesize hybridized nanotube and nanosheet. Initially, parent materials have been synthesized: The pristine CNT has been modified by acid mixture solution, and reduced graphene oxide has been prepared by chemical reduction method. Henceforth, the self-assembly in situ sol–gel technique has been endorsed here. The synthesized nanohybrids have been characterized by different spectroscopic techniques: FTIR, Raman, UV, and XPS to confirm the attachment of multifunctionalities; meanwhile, the composition and stability have been investigated from XRD and TGA plots. The magnitude of surface charge and particle size distribution have been evaluated for the parent and hybridized products; further, morphology of all the samples has been authenticated from FESEM and TEM.  相似文献   
7.
A simple and efficient Brønsted acid catalyzed synthesis of 2-aryl-quinazolinones via cyclization of 2-aminobenzamides with benzonitrile in PEG under metal and ligand-free condition. All substituted benzonitriles were also well participated with the formation of the corresponding products in moderate to good yields.  相似文献   
8.
The development and fabrication of a simple, portable, and sensitive detection tool to precisely monitor nitrite level is of growing importance in electrochemistry research, given the strong interest in the protection of drinking water quality, treatment of wastewater, food production, and control of remediation processes. This work describes the fabrication of a simple, cost-effective, pen-type electrochemical sensor based on bimetallic gold and tungsten nanoparticles electrochemically decorated on graphene-chitosan modified pencil graphite electrode (PGE) for the trace detection of nitrite in real samples. The prepared nanocomposite was characterized using XRD, SEM, and EDS. The electrochemical behavior of the sensor was evaluated by cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS). Results revealed that the proposed sensor displayed excellent electrocatalytic activity towards electro-oxidation of nitrite with an irreversible redox reaction. The AuNPs-WNPs@Gr-Chi/PGE sensor exhibited excellent analytical performance with a wide linear range from 10 to 250 μM towards nitrite. The LOD and LOQ were calculated to be 0.12 μM and 0.44 μM, respectively. The designed electrochemical sensor was successfully applied for the detection of nitrite in water, milk, and natural fruit juice samples.  相似文献   
9.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   
10.
Excessive uric acid levels in the human body (hyperuricemia) are the main causes of kidney stones and diabetes. In this study, a layer-by-layer arrangement of polymers and nanocomposites is used as a new electrode sensing material for rapid and direct electrochemical determination of uric acid (UA). The electrode surface architecture was constructed by the incorporation of poly (amidoamine) dendrimer with 0.5 generation (poly (amidoamine) [PAMAM] [D-G0.5]) of multiwalled carbon nanotube-silver nanoparticles (MWCNT-AgNP) and a poly (neutral-red) (poly [NR]) polymer. The PAMAM (D-G0.5)/MWCNT-AgNP/poly (NR)-coated electrode has a good electrocatalytic activity for the determination of UA using cyclic voltammetry and showed remarkable enhancement in current response at a low-oxidation potential (0.3 V). Under optimal conditions, the developed electrochemical sensor showed an excellent and wide linear range for the determination of UA (i.e. 0.016 μM–2500 μM), and the limit of detection was found to be 0.005 μM. The modified sensor system demonstrated excellent sensitivity and selectivity toward the detection of UA in the presence of interfering substances, which are commonly found in urine and human fluid samples. Furthermore, the developed sensor has represented both reproducibility and excellent stability for the UA determination in real samples (human urine).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号