首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
化学   16篇
物理学   6篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   4篇
  2010年   3篇
  2009年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
研究了新合成试剂4-(5-硝基-2-吡啶偶氮)-1,3-二氨基苯(5-NO2-PADAB)与铑(Ⅲ)的显色反应.结果表明,在pH 3.3~4.7的乙酸-乙酸钠缓冲介质中,5-NO2-PADAB与铑形成2∶1的紫红色络合物,其最大吸收波长位于524 nm.该络合物在1.2 mol/L HClO4介质中可质子化转变为另一种型体的紫蓝络合物,最大吸收波长红移至580 nm,其表观摩尔吸光系数提高至1.52×105 L·mol-1·cm-1,以EDTA为掩蔽剂,大量常见金属离子不干扰测定.铑含量在0~0.8 μg/mL内符合比尔定律.所拟方法可应用于催化剂中微量铑的测定.  相似文献   
2.
基于铑(Ⅲ)与2-(5-溴-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-PADMA)的高灵敏显色反应,建立了激光热透镜光谱法测定痕量铑的新方法。实验表明,在pH 3.6~6.0的HAc-NaAc缓冲介质中,Rh(Ⅲ)与5-Br-PADMA显色形成紫红色铑络合物;继续以1.2 mol/L HClO4酸化后,可转变为另一种具有较高吸收特性的绿蓝色质子化型体,其最大吸收波长位于612 nm处,与所用He-Ne激光器的输出激光波长(632.8 nm)能较好匹配。铑的质量浓度在5~140μg/L范围内与热透镜信号强度呈良好的线性关系,检出限(S/N=3)为1.1μg/L。该方法灵敏度高、选择性好,用于铑炭催化剂中痕量铑的测定,结果满意。  相似文献   
3.
以5-(5-碘-2-吡啶偶氮)-5-二氨基甲苯(5-I-PADAT)作显色剂,建立了双波长叠加分光光度法同时测定铑、钯的新方法。研究发现,在0.6~1.8 mol/LHCIO4介质中,Pd(II)与5-I-PADAT形成稳定络合物,而在此酸度下,Rh(III)则完全不能反应;在pH4.0~5.2 HAc-NaAc缓冲介质中,Rh(III)与5-I-PADAT可形成稳定紫红色络合物,铑络合物形成后提高酸度至0.24~5.57 mol/L HCIO4介质,该络合物不仅不被分解,而且转化为另一种紫蓝色质子化型体,吸收红移、吸光度显著增大。研究还发现,Rh(III)、Pd(II)与5-I-PADAT形成的络合物,均呈现两个吸收峰,强峰分别位于580 nm和584 nm处,弱峰分别位于538 nm和547 nm处。其各自的强弱峰对应的吸光度之和与溶液中铑、钯的含量具有良好的线性关系。据此,建立了双波长叠加分光光度法同时测得铑、钯新方法。铑和钯的表观摩尔吸光系数分别为εRh=2.76×105L.mol-1.cm-1和εPd=1.14×105L.mol-1.cm-1,灵敏度分别为单波长法测定的1.52倍和1.53倍。铑、钯的质量浓度分别在0~0.5μg/mL和0~1.0μg/mL范围内符合比尔定律。方法用于催化剂中铑和钯的同时测定,结果满意。  相似文献   
4.
研究了新合成试剂5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-I-PADAT)与钌(Ⅱ)的显色反应。实验表明,在30%乙醇存在下于pH 4.0~6.2 HAc-NaAc缓冲介质中,钌(Ⅱ)与5-I-PADAT形成稳定的配合物,其最大吸收波长位于529 nm。该配合物在无机酸(HCl,H2SO4,HClO4,H3PO4)作用下,可转变为另一种具有较高吸收特性的配合物,其最大吸收波长位于509 nm,适宜的酸浓度范围分别为0.15~0.60 mol/L HCl,0.15~0.48 mol/L H2SO4,0.15~0.48 mol/LHClO4和0.15~0.90 mol/L H3PO4。表观摩尔吸光系数5ε09=5.72×104L.mol-1.cm-1,钌含量在0~0.5μg/mL内符合比尔定律。40倍的银、10倍的锇、6倍的金和4倍的Pt、Rh、Ir等贵金属离子不干扰钌的测定,钯的干扰可利用其与钌(Ⅱ)显色温度和酸度的差异性消除。方法可用于催化剂中微量钌的测定。  相似文献   
5.
合成了新试剂碘代吡啶偶氮胺类化合物5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-I-PADAT),用红外光谱、元素分析和核磁共振波谱对其进行了鉴定,并研究了该试剂与铑(Ⅲ)的显色反应。结果表明,在pH=4.0~5.2的乙酸-乙酸钠缓冲溶液中,铑(Ⅲ)与5-I-PADAT形成1∶2的紫红色络合物。该络合物在1.2mol·L-1高氯酸介质中转变为另一稳定的蓝色配合物,其最大吸收峰位于580nm波长处,铑(Ⅲ)含量为0~0.8μg/mL范围内符合比耳定律,表观摩尔吸光系数为1.81×105L·moL-1·cm-1。该反应具有很高的灵敏度和良好的选择性,大量常见金属离子在一定范围内无干扰。所拟方法操作简单,用于催化剂中微量铑的测定,结果满意。  相似文献   
6.
合成了新显色剂2-(5-碘-2-吡啶偶氮)-5-二甲氨基苯胺(5-I-PADMA),并研究了其与铑(Ⅲ)的显色反应。结果表明,在pH4.0~6.2的乙酸-乙酸钠缓冲介质中,铑(Ⅲ)与5-I-PADMA可形成稳定的1∶2配合物,该配合物呈现2个吸收峰,分别位于557、597 nm处。配合物形成后,以适量HClO4(0.24~5.57 mol.L-1)酸化,可转变为另一种具有较高吸收特性的质子化形体,其吸收峰分别红移至564、613 nm处。表观摩尔吸光系数达ε613=1.86×105L.mol-1.cm-1,铑的质量浓度在0~0.56 mg.L-1范围内符合比尔定律。该法是目前测定痕量铑的高灵敏显色体系之一,且具有良好的选择性。所建立的方法操作简单,应用于催化剂中微量铑的测定,结果满意。  相似文献   
7.
基于2-(5-溴-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-PADMA)与钯(II)的高选择性显色反应,建立了激光热透镜光谱法测定微量钯的新方法。在0.6 mol/L HClO4介质中,于室温下放置10 min,Pd(II)与5-Br-PADMA反应形成稳定的青蓝色配合物,其最大吸收波长位于611 nm处,与所用He-Ne激光器输出波长632.8 nm能较好匹配。钯质量浓度在5~150 ng/mL范围内与激光热透镜信号强度呈线性关系,检出限为1.6 ng/mL,以工作曲线的斜率计算,灵敏度较光度法提高115倍。常见金属离子及10倍量的铂、铑、铱、钌、锇和金等贵金属离子不干扰钯的测定,方法具有良好的选择性。本法应用于催化剂、矿石和合金中钯的测定。  相似文献   
8.
建立了浊点萃取-石墨炉原子吸收光谱法(GFAAS)测定痕量金属钯的新方法,利用表面活性剂Triton X-114和络合剂2-(5-溴-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-PADMA)对钯进行浊点萃取。研究了溶液pH、试剂浓度、平衡温度和加热时间等因素对浊点萃取及测定灵敏度的影响。优化条件为:pH 5.50 HAc-NaAc缓冲,0.08 mL 5×10-4 mol/L 5-Br-PADMA,0.70 mL10g/L Triton X-114。在最佳条件下,方法的线性范围为0.1~10 ng/mL,钯的检出限为0.068 ng/mL,富集倍率为45倍。该方法可用于环境样品中痕量钯的富集和测定,结果令人满意。  相似文献   
9.
纳米激光作为一种纳米级相干光源,是光电集成芯片的关键器件.激光器进一步小型化的阻碍在于随着激光器谐振腔体积的减小,其损耗迅速增大.连续域束缚态(bound states in the continuum,BICs)能有效降低全介质结构的辐射损耗.本文提出一种基于全介质共振波导光栅(resonant waveguide grating structures,RWGs)准BIC的纳米激光器,可有效降低纳米激光器的阈值.将传统两部分光栅转换为四部分光栅,可激发波导结构的准BIC模式.本文数值研究了该模式的受激辐射放大特性.结果表明:TE偏振光照射下,基于四部分光栅的RWG结构的纳米激光阈值比基于传统RWG结构的阈值低20.86%.TM偏振光照射时,阈值比传统RWG结构降低了3.3倍.而且TE偏振光照射时纳米激光的阈值比TM偏振光照射时阈值大约低一个数量级,这是因为TE偏振光照射时,结构的电场局域在波导层内,增强了光与增益材料的相互作用,从而降低了纳米激光的阈值.  相似文献   
10.
在pH为8.0的NaH2PO4-Na2HPO4缓冲溶液中,钴(Ⅱ)-NH2OH·HCl-5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-I-PADAT)体系在-1.25V(vs.SCE)产生—灵敏的络合物吸附波.据此建立了极谱法测定微量钴的新方法,该波一阶导数峰电流与钴(Ⅱ)的质量浓度在1-25μg·L-1范围内呈的线性关系,检出限达0.12μg·L-1.研究了该体系的极谱波性质,结果表明该波为催化吸附波,其电极过程为不可逆过程,电子转移数为2.此外还实验了多种离子对峰电流I′p的影响,所拟方法用于维生素B12注射液和陕南镍矿中微量钴的测定,结果满意.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号