首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   7篇
化学   7篇
物理学   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
运用NMR方法探讨了298 K时N,N'-双(十二烷基二甲基)-1,6-己烷溴化铵(G12-6-12)和十六烷基三甲基溴化铵(CTAB)在D2O溶液中的相互作用. 测得G12-6-12和CTAB的临界胶束浓度cmc值分别约为0.773和0.668 mmol/L. 在不同G12-6-12摩尔分数下,混合体系的临界胶束浓度实验值cmc*小于理想值CMC*,相互作用参数βM<0,但是当α≤0.3时,cmc*比CMC*小很多,同时 满足|βM|>ln(cmc1/cmc2)条件. 表明G12-6-12和CTAB之间存在协同效应,可以形成混合胶束,在2D NOESY谱中可以看到G12-6-12与CTAB分子间的交叉峰,扩散实验也表明混合溶液中的胶束半径比纯溶液中的G12-6-12胶束半径大,都预示混合胶束的形成. 当α>0.3 时,cmc*≈CMC*M≈0, 根据假相分离模型和规则溶液理论,G12-6-12和CTAB近似于理想混合.  相似文献   
2.
缓蚀膜电化学行为与微观粘附力特征   总被引:4,自引:0,他引:4  
采用传统电化学测试技术及原子力显微镜(AFM)力曲线分析法对十二烷基硫醇/金电极以及十二烷基磺酸钠(SDS)/铝电极表面缓蚀吸附膜的吸附行为进行了研究. 结果表明, 随缓蚀剂浓度改变, 电极电化学行为与缓蚀膜的微观粘附力特征呈现出关联性的变化趋势, 表明AFM力曲线技术可成功应用于缓蚀膜吸附行为的研究.  相似文献   
3.
以20种溶剂作为探针分子,采用反气相色谱技术表征了甲基丙烯酸甲酯-甲基丙烯酸丁酯-甲基丙烯酰氧丙基七环戊基倍半硅氧烷三元共聚物[poly(MMA-co-MBA-co-MA-POSS)]的一系列物理化学性质,并分析了溶剂探针分子与共聚物分子间的相互作用以及共聚物在溶剂中的溶解性.结果表明:在实验温度范围内(343~393K),乙酸甲酯、乙酸乙酯、芳烃、二氯甲烷、三氯甲烷是良溶剂,乙酸丙酯、乙酸丁酯、乙酸戊酯、四氯化碳是中等溶剂,烷烃类和醇类是劣溶剂;随着共聚物中POSS含量的增大,溶剂探针分子溶解聚合物的能力增强,但引入POSS对共聚物的溶度参数无明显影响.  相似文献   
4.
在采用阳离子型双子(gemini)表面活性剂作为乳化剂,不使用任何助乳化剂的条件下,通过改进微乳液聚合工艺制备了窄分布粒径可控的阳离子型聚苯乙烯(PS)纳米乳液。 改进微乳液聚合的主要特点是:大部分苯乙烯以预乳液的形式恒速滴入引发聚合的微乳液中,使用具有高乳化性能的gemini表面活性剂作为乳化剂能明显降低乳胶粒粒径。 实验结果表明,少量阳离子单体三甲基烯丙基氯化铵作为共聚单体能够明显减小Z均粒径、降低粒度分布,乳化剂用量、引发剂用量和反应温度均能影响制备乳胶粒的粒径及其粒度分布。 乳化剂和引发剂用量分别为苯乙烯质量的5%~10%和1.0%~1.5%、反应温度为70~75 ℃时,能够制备粒径小分布窄的阳离子型聚苯乙烯纳米粒子。 Z均粒径与苯乙烯质量之间的线性关系表明,Z均粒径可以通过苯乙烯用量来控制。 不同聚合工艺下制备的聚合物粒度分布曲线表明,改进微乳液聚合工艺(半连续预乳化工艺)在制备窄分布的聚合物纳米粒子方面具有很强的优越性。  相似文献   
5.
我们报道了在环境条件下采用简单的线性聚胺作为仿生结构导向剂快速可控的合成了聚合物杂化的SiO2纳米粒子。采用TEM, EDX, FT IR, TGA等方法对所合成的纳米粒子的形态、结构和组成进行了详细表征。另外,我们也发现纳米粒子的形成强烈依赖于体系中SiO2的矿化反应时间。所合成的杂化纳米粒子预期将在催化和生物医学等领域具有重要的应用价  相似文献   
6.
阳离子化热响应微凝胶的合成及在二氧化硅矿化中的应用   总被引:1,自引:0,他引:1  
采用无皂乳液聚合技术,在亚甲基双丙烯酰胺(MBA)为交联剂的情况下,N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酰氧乙基三甲基氯化铵(DMC)发生共聚,生成具有阳离子功能化的热响应微凝胶poly-(NIPAM-co-DMC).TEM研究表明该微凝胶粒子的粒径约为200 nm左右,具有规则的球形形态.DLS和1H-NMR研究证实了微凝胶粒子的最低临界溶液温度(LCST)在34℃左右.进一步以此微凝胶为模板,在中性条件下,以四甲氧基硅烷(TMOS)为硅源,在此模板上仿生沉积S iO2,生成poly(NIPAM-co-DMC)/S iO2杂化纳米粒子.FTIR、TEM、1H-NMR及TGA等研究表明S iO2在聚合物模板上发生了沉积.能谱分析进一步证明了S iO2主要分布在杂化纳米粒子的壳层区域.另外,当矿化反应温度高于微凝胶的LCST值时,体系生成了具有明显核壳结构的异形杂化粒子.  相似文献   
7.
SiO2/聚合物核壳型杂化粒子及其空心结构以其独特的形貌在药物控制释放、催化剂载体、生物医药等领域应用前景广阔,引起了人们的广泛关注。本文着重从乳液聚合法、仿生矿化法等制备方法角度阐述了SiO2/聚合物核壳型杂化粒子及其空心结构的研究进展。乳液聚合制备SiO2/聚合物核壳型杂化粒子简单易行,一般需要预先合成SiO2纳米粒子,其合成过程通常需要一些非理想的条件,如高温高压、极端pH、昂贵或有毒的有机试剂等,而且预先合成的SiO2粒子无法与聚合物实现100%匹配,即总有纯的聚合物粒子存在。相比之下,原位仿生矿化法制备SiO2杂化粒子不仅在环境条件下可进行,而且能够精确控制其纳米尺度的形态及分级有序结构。目前对材料科学家来讲,要使人工合成SiO2/聚合物杂化粒子实现像自然生物硅那样优异的性能,仍然是很大的挑战。  相似文献   
8.
采用无皂乳液聚合法合成了聚(苯乙烯-co-甲基丙烯酰氧乙基三甲基氯化铵)(poly(St-co-DMC))纳米粒子,平均粒径约为100 nm.以此纳米粒子为模板,在接近室温及p H为中性的温和条件下,以四甲氧基硅烷(TMOS)为硅源,合成了poly(St-co-DMC)/Si O2杂化纳米粒子,TEM结果显示该纳米粒子具有明显的核壳结构,Si O2主要沉积在壳层.进一步通过四氢呋喃溶解制备得到具有空心结构的纳米粒子,这种空心结构纳米粒子的FTIR图谱中既有Si O2的信号,也有poly(St-co-DMC)的信号,说明空心纳米粒子的壳层不完全是Si O2,对空心纳米粒子的TGA结果分析计算得到Si O2的含量仅为69.7%,说明纳米粒子的壳层为杂化壳层,并且,这种壳层的厚度随着反应温度的升高、反应时间的延长、TMOS用量的增加及聚合物模板中DMC含量的增加而增大.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号