首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
化学   6篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
顶空气相色谱法同时测定托比司他中的6种残留溶剂   总被引:1,自引:0,他引:1  
马博凯  高峡  刘伟丽  林雨青 《分析化学》2016,(10):1528-1532
采用顶空气相色谱技术,建立了同时测定托比司他中6种残留溶剂的方法。考察了不同固定相对分离效果的影响,优化了平衡加热时间影响以及制样溶剂。在优化的实验条件下,采用Rtx-200型聚三氟丙基甲基硅氧烷为固定相的色谱柱(30 m ×0.25 mm ×1μm)分离、氢火焰离子化检测器检测、外标法定量的分析方案,实现了甲醇、乙醇、二氯甲烷、乙酸乙酯、1,4-二氧六环和吡啶6种残留溶剂的同时分离与测定。6种溶剂在各自的线性范围内线性关系良好,线性相关系数( R2)均大于0.998,定量限分别为甲醇0.006%、乙醇0.005%、二氯甲烷0.012%、乙酸乙酯0.0025%、1,4-二氧六环0.0076%、吡啶0.004%。在3个添加水平下,6种残留溶剂的加标回收率在92.3%~100.3%之间,相对标准偏差为0.3%~3.6%。实际样品分析结果表明,本方法简单、快速、分离效果好,可用于托比司他中6种残留溶剂的检测。  相似文献   
2.
关利浩  王超  张望  蔡雨露  李凯  林雨青 《电化学》2019,25(2):244-251
用微电极进行活体检测神经化学物质属于侵入式分析,会对脑组织产生不可避免的损伤,进而在生理上产生一些信号干扰检测过程. 减小电极的尺寸对于减小对脑组织的损伤非常重要. 该研究报道了一种新型制备金纳米电极的方法并将其用于活体鼠脑内多巴胺分析研究. 这种金纳米电极的制备过程包含两步:1)通过离子溅射在毛细管的尖端覆盖一层金种子;2)把覆盖有金种子的毛细管浸入氯金酸和盐酸羟胺混合溶液中湿法沉积生成连续导电金膜. 制备好的纳米电极尖端约300 ~ 400 nm. 该金纳米电极可以应用于多巴胺的检测,并且在多巴胺浓度1.0 ~ 56.0 μmol·L-1范围内有很好的线性响应,最低检测限低至0.14 μmol·L-1(信噪比=3). 该金纳米电极具有优异的电化学性能,可以成功的应用于检测鼠脑纹状体儿茶酚胺的释放.  相似文献   
3.
氮掺杂纳米碳块的制备及氧还原的高电化学催化活性   总被引:1,自引:0,他引:1  
面对全球化的能源危机,燃料电池由于其高效性和可重复使用性成为越来越具有潜力的能量转化设备.阴极发生的氧气还原反应对于燃料电池的性能十分重要,寻找高效的氧还原催化剂在很大程度上可以提高燃料电池的性能.传统的氧还原催化剂是贵金属铂,但是铂的价格十分高,较差的稳定性和选择性限制了它的商业化应用,因此找到一种廉价高效的非贵金属氧还原催化剂来代替铂基催化剂成为目前的研究热点.我们最近发现将纯的三羟甲基氨基甲烷置于管式炉中在800°C下真空烧制2 h,可以简单快捷地得到一种含 N量为4.11%的纳米碳块(标记为 NCNBs-800),该材料可用于催化电化学氧气还原反应.同样情况下在700和900°C下合成的材料标记为 NCNBs-700和 NCNBs-900.采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学旋转圆盘方法与技术对催化剂的成分、形貌和电催化性能进行了表征. SEM表明 NCNBs-800为直径为60 nm的碳块,用 FTIR手段表征了 NCNBs-800的结构变化,三羟甲基氨基甲烷中的–OH和–NH2在高温下发生消去反应,形成了饱和度不同的 C–N键和 C–C键.这些饱和度不同的 N原子和 C原子增加了材料的缺陷结构和活性位点,进一步促进了氧还原反应的催化性能.采用 XPS分析了 NCNBs-800表面的元素,通过对 N 1s进行分峰拟合,发现 NCNBs-800含有能促进氧还原性能的吡啶-N和吡咯-N,特别是吡啶-N,它吸电子的能力很强,从而导致与它邻近的 C原子表面具有一定的正电荷,这些正电荷促进了氧气的吸附和还原,为氧气还原反应提供活性位点,促进氧气还原反应的发生. XRD结果表明,三羟甲基氨基甲烷热解前后的 XRD谱图有明显变化,热解后的三羟甲基氨基甲烷呈现两个宽峰,代表着杂化碳的存在. NCNBs-800的衍射峰强度比 NCNBs-700以及 NCNBs-900大,但是宽度则比 NCNBs-700以及 NCNBs-900小,这表明800°C有利于材料的石墨烯化及碳化过程.电化学阻抗可以表明修饰电极的表面性质,阻抗图中高频处半圆的直径大小代表电子转移阻力,低频处的线性部分代表扩散过程.阻抗数据表明, NCNBs-800的电荷转移电阻可与 Pt/C催化剂相比,但是比裸露的玻碳电极小.这表明 NCNBs-800有较好的导电性和电化学性质. CV曲线表明 NCNBs-800氧还原的起始电位是-0.05 V (vs Ag/AgCl),氧气的还原电位是0.20 V (vs Ag/AgCl),说明 NCNBs-800具有良好的电化学催化性能.旋转环盘电极仪测得的氧还原极化曲线表明,在-0.3 to-0.8 V下的 NCNBs-800氧还原的电子转移数为3.4,过氧化氢产率为52%-35%,表明 NCNBs-800呈现一个提高的四电子过程.稳定性对于燃料电池氧气还原反应也是一个十分重要的性能,通过计时电流技术在电压为-0.2 V下对 NCNBs-800与 Pt/C进行了稳定性测试.结果表明,在2500 s之后 NCNBs-800相对于它的最初催化活性损失为17.56%,而 Pt/C损失了30.71%,从而说明 NCNBs-800的稳定性优于 Pt/C.总之,我们通过一步热解的简易技术制备了一种氮掺杂纳米碳材料,该碳材料具有廉价、高效和容易制备等特点,具有良好的电化学催化性能,有望在燃料电池氧化还原反应中得到大规模应用.  相似文献   
4.
本文通过联用选择性的电化学传感器和活体微透析采样技术,提出并建立了自由活体大鼠脑内次黄嘌呤的在线电化学分析新方法.本研究中,次黄嘌呤被黄嘌呤氧化酶(XOD)催化氧化,同时产生H2O2.利用普鲁士蓝(PB)作为H2O2电化学还原的催化剂,通过测定H2O2,从而实现了次黄嘌呤的在线电化学分析.实验结果表明,所建立的方法具有很好的选择性、稳定性和重现性,可以应用于自由活动大鼠脑内次黄嘌呤的连续测定.本文的研究为与次黄嘌呤相关生理和病理过程分子机制的研究奠定基础.  相似文献   
5.
6.
以1,2,3-三氮唑基杂环多羧酸H_3ctia(H_3ctia=5-(4-carboxyl-1H-1,2,3-triazol-1-yl) isophthalic acid)为配体合成了一系列三维镍(Ⅱ)-镧(Ⅲ)混金属配位聚合物[Ln_2Ni(tia)_4(H_2O)_4]_n(Ln=La (1)、Ce (2)、Pr (3)、Nd (4)、Sm (5)、Eu (6)、Gd (7)、Tb (8)、Dy (9))和{[Yb_2Ni(tia)_4(H_2O)_2]·2H_2O}_n(10)(tia=5-(1H-1,2,3-triazol-1-yl)isophthalate)。X射线单晶衍射测试表明,配合物1~10皆具有三维网格结构,其中配合物1~9同构,而配合物10的组成与1~9一样,但晶体学结构则完全不同。在可见光区域,化合物5、6、8和9分别出现了Sm、Eu、Tb和Dy的特征发射峰,其中配合物6、8和9的荧光寿命分别为234、598和2.96μs;在近红外区域,配合物4、9和10分别出现了Nd、Dy和Yb的特征发射峰,对应的荧光寿命分别为4.25、3.42和5.66μs。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号