首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   36篇
  国内免费   53篇
化学   109篇
晶体学   3篇
力学   30篇
综合类   11篇
数学   34篇
物理学   105篇
  2023年   8篇
  2022年   15篇
  2021年   6篇
  2020年   3篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   11篇
  2015年   11篇
  2014年   12篇
  2013年   17篇
  2012年   15篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   3篇
  2007年   9篇
  2006年   19篇
  2005年   6篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1965年   2篇
  1959年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
1.
等离子体在外磁场中膨胀产生的抗磁腔和不稳定性是空间物理和聚变物理中的重要现象.本文实验研究了激光产生的等离子体在外磁场中膨胀时在抗磁腔表面产生的槽纹不稳定性,数据分析显示实验中观察到的不稳定性属于大拉莫尔半径槽纹不稳定性.实验发现充入稀薄背景气体能够显著抑制槽纹不稳定性的发展,背景气体气压超过50 Pa时(约为抗磁腔表面等离子体密度的1%),槽纹不稳定性几乎被完全抑制.动理学分析表明离子-离子碰撞是抑制不稳定性发展的主要因素.这些结果对磁场辅助激光聚变和爆炸空间物理现象等领域有重要参考价值.  相似文献   
2.
分别用机械研磨无溶剂法、添加柠檬酸无溶剂法制备了Ni/MCM-41催化剂,对所制催化剂进行了分析表征,探究其萘加氢反应性能并与常规浸渍法进行了对比。与常规浸渍法相比,机械研磨无溶剂法所制催化剂的物理性质相近,金属镍分散度和萘加氢性能略有提高;添加柠檬酸无溶剂法则显著提升了催化剂的分散度和萘加氢性能,金属镍分散度由6.9%大幅提高至67.9%,萘加氢性能提高了近1倍。通过红外光谱、紫外光谱和热重分析,提出了添加柠檬酸对无溶剂法制备催化剂性能的促进作用机制。  相似文献   
3.
李慧  崔兰冲  章国磊  张萌萌  焦丽丽  吴巍 《色谱》2021,39(5):518-525
基于超高效液相色谱-串联质谱(UPLC-MS/MS)建立定量分析色氨酸(Trp)及代谢产物3-OH-犬尿氨酸(3-OH-Kyn)、3-OH-邻氨基苯甲酸(3-OH-AA)、黄尿酸(XA)、犬尿氨酸(Kyn)、5-羟基吲哚乙酸(5-HIAA)、犬尿喹啉酸(KA)和5-羟色胺(5-HT)的方法,应用该方法分析其在尿样中的含量,探讨排泄规律。将尿样稀释、离心后,加入丹磺酰氯(DNS-Cl)衍生,经Thermo C18色谱柱(50 mm×3 mm, 2.7 μm)分离和0.1%甲酸和甲醇梯度洗脱后,采用电喷雾电离(ESI)源,在正离子扫描和多反应监测(MRM)模式下检测。以咖啡酸(CA)为内标,定量分析。结果显示,8种目标化合物的线性关系良好,相关系数(R 2)≥0.9740,检测灵敏(LOD为0.005~0.5 ng/mL),回收率高(93.24%~107.65%)。采用本方法检测分析了健康志愿者70个尿液样本,在尿样中检测到Trp原型及其7种代谢产物。结果表明,体内的Trp是通过原型和代谢两种方式排泄:Trp原型的含量为5.22~20.88 μg/mL;尿液中经代谢后排泄的Trp量是原型的124%~268%,即体内的Trp主要经代谢后排出体外。方法主要研究了Trp-5-HT和Trp-Kyn两条途径的代谢产物含量,Trp经Kyn降解生成的3-OH-AA和3-OH-Kyn含量较多,即Trp-Kyn是体内Trp的主要代谢途径。方法通过UPLC-MS/MS实现了尿液中Trp及其代谢产物含量的检测,能为临床检查提供技术和理论支持。  相似文献   
4.
CO、C2H2、CH4是溶解在变压器油中的典型故障特征气体,其种类和浓度能够反映油浸式变压器绝缘故障的不同类型和严重程度,进行油中溶解气体分析是在线检测变压器运行状态的重要方法.基于第一性原理,通过Mn-MoS2单层对三种气体的吸附能、转移电荷、态密度和形变电荷密度等参数以及解吸性能分析和灵敏度计算,提出了一种基于Mn-MoS2材料的气敏传感器对油中溶解气体进行分析的方法.结果表明Mn-MoS2对CH4是物理吸附,对CO和C2H2是化学吸附.对于Mn-MoS2来说,CH4在常温下吸附能力差且灵敏度低,CO在不同温度下均有较强的吸附能力,而C2H2在常温下吸附稳定,高温下易解吸且响应灵敏度高.因此,Mn掺杂的MoS2体系可预期作为CO的气体吸附剂和检测C2H  相似文献   
5.
研究处于均布磁场中的理想导体的二维电磁热弹性耦合问题,引入势函数使控制方程转化为3个偏微分方程.运用Laplace变换和Fourier变换得到该问题在变换域内的精确表达式,再通过级数展开和Laplace逆变换法求得在时间较短时的逆变换,得到时间-空间域内问题的解.运用此方法研究了表面受到热冲击的半无限空间问题.给出了电磁热弹性波、膨胀波和横向波传播的速度,并通过数值计算,给出了各个场量的分布图.所得结论与已有的结论一致.  相似文献   
6.
以N,N-二甲基-1,3-丙二胺、尿素及1,4-二氯丁烷为原料,通过共缩聚反应两步法制备了一种新的主链型的水溶性聚季铵盐.采用正交试验获得了制备聚季铵盐的最佳条件:N,N-二甲基-1,3-丙二胺与尿素的物质的量比为2∶1,反应温度为135℃,反应时间为11h,得到中间体双[3-(N,N-二甲基丙胺基)]丙脲,产率高达99%;中间体与1,4-二氯丁烷的物质的量比为1∶1,于90℃下反应6h.采用红外光谱和核磁氢谱对产物结构进行表征,测定了其热稳定性和特性粘数.  相似文献   
7.
利用硫化钠与硫磺反应制备二硫化钠,然后将二硫化钠与1,3-丙磺酸内酯反应,合成了一种可作为电镀添加剂的阴离子表面活性剂——聚二硫二丙烷磺酸钠(SPS)。采用核磁共振氢谱对合成产物进行结构表征,确认了产物结构及产率。通过正交试验研究了产物产率与反应物配比、反应温度、溶剂加入量等因素之间的关系,找出了最优合成条件:第一步合成二硫化钠的反应中,硫化钠/硫磺物质的量比为1∶1.3,温度55℃,加水量18 mL;第二步合成SPS的反应中,1,3-丙磺酸内酯/硫化钠物质的量比为1.7∶1,温度40℃,溶剂量75 mL,产物的最高产率可达到95.8%。  相似文献   
8.
建立了超高效液相色谱串联质谱测定牛奶中四环素类、青霉素类、磺胺类和泰乐菌素等11种兽药残留的检测方法。样品经乙腈超声提取后离心分离,上层清液稀释10倍后过0.2μm滤膜上机测定。在优化条件下,11种兽药在其线性范围内的相关系数均在0.998以上,定量下限(LOQ,S/N=10)为0.3~15μg/kg,在低、中、高3个水平下的加标回收率为81%~117%,相对标准偏差为0.6%~10.2%。方法用于实际牛奶样品中兽药残留量的测定,结果满意。  相似文献   
9.
现代复合材料层合板具有高强和轻型的突出优点,从而在军工和民用等诸多领域发挥着重要作用。这种板结构的特点是随着纤维走向的不同,层间材料的物理-力学特性发生剧烈变化。沿板厚方向变形的梯度比较陡峭,并在层间结合面处发生强不连续,呈现zig-zag (锯齿状)现象。这导致横向剪应变在板的静态和动态响应中发生重要作用,不计横向变形的经典组合板计算模型CLPT难以适应现代多层板计算分析的需要。考虑横向剪切变形影响的板的计算模型得到重视和发展。需要指出,现有各种考虑剪切变形影响的计算模型虽然有了很大的发展,但在全面和准确性上仍然存在一定的不足,难以适应现代多层组合板横向力和物理性能多变的情况。模型预测的沿板厚方向位移和应力的变化规律难以通过严格的检验。本文提出的以比例边界有限元为基础的正交各向异性板的数值计算模型,同时可适用于各种薄板与厚板的分析,对现代复合材料层合板的分析具有特殊的优越性。所得到的板的位移、正应力和剪应力沿板厚方向的变化,与三维弹性理论的标准解高度吻合。数值算例进一步表明,随着层间纤维走向的变化,板内位移场和应力场沿板厚方向剧烈变化所呈现的锯齿现象均可以精准地进行模拟。据此,本文建议方法对现代板分析的广泛适应性和高度准确性得到了充分论证。  相似文献   
10.
以高岭石/二甲基亚砜为前驱体,利用置换法制备了高岭石/苯甲酰胺插层复合物。XRD和FTIR分析表明苯甲酰胺进入高岭石层间并与其形成新的氢键。采用TG、DSC研究了插层复合物的热分解行为。结果表明复合物在加热过程中发生两步分解,第一步是插层复合物的分解,即插层剂分子于231℃发生脱嵌,第二步为高岭石脱羟基的过程。针对第一阶段的脱嵌反应,采用等转化率法改进后的迭代法、Malek法以及Dollimore法等动力学方法计算得到了完整的动力学三因子:活化能Ea=75.4kJ.mol-1,指前因子A的范围为4.9×1010~8.8×1010s-1,动力学方程为:G(α)=[1-(1-α)1-n]/(1-n),f(α)=(1-α)n。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号