首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用超高速激光纹影技术测量了Z箍缩等离子体磁重联现象。实验采用超高速光电分幅相机,配合激光纹影技术,测量了XP-1装置上两根金属丝产生的等离子体分布,论证了超高速激光纹影技术研究Z箍缩磁重联现象的可行性。双钨丝实验结果表明,电流加载约10ns后金属丝已有明显膨胀,线性拟合得到平均膨胀速度约8km/s,金属丝内外两侧出现了规则的极有可能是垂直磁场的电热不稳定性扰动,并沿角向高度关联。铝丝负载的实验结果表明,早期的不稳定性波长为0.4mm,电流峰值之后金属丝初始位置仍有大量等离子体,后期的不稳定性波长约1.5mm。这些现象揭示了不稳定性发展的一个主要特征:短波模式受抑制,长波模式将占主导。  相似文献   

2.
在惯性约束聚变物理研究中,等离子体界面处的动理学效应及其时空演化特性近年来受到重点关注,因为它会显著影响激光能量沉积、激光等离子体不稳定性、辐照对称性、黑腔和内爆性能等诸多物理。准确描绘等离子体特征界面附近的动理学效应是惯性约束聚变物理设计的基本需求,也是高能量密度物理中的具有挑战且未完全解决的问题。重点回顾近几年来本团队围绕等离子体动理学效应及其影响开展的一些研究工作:(1)聚变黑腔中金等离子体与靶丸冕区等离子体边缘处的电场结构及其加速的高能离子对内爆对称性的影响;(2)激光光路上高Z-低Z等离子体界面处的电场产生机制及其导致的反常离子扩散对激光等离子体不稳定性的影响;(3)等离子体中电磁场结构的质子照相反演。  相似文献   

3.
间接驱动惯性约束聚变真空或者近真空黑腔实验中,纳秒激光烧蚀产生的腔壁等离子体可以在靶丸烧蚀等离子体(或低密度填充气体)中驱动无碰撞静电冲击波,冲击波电场会以二倍冲击波速度反射离子。为了测量纳秒激光驱动非相对论无碰撞静电冲击波产生的10 keV量级的反射离子能谱,设计了低能汤姆逊离子谱仪。利用Geant4建模,对离子测量过程进行了全过程蒙特卡罗模拟,用以评估靶室残余气体和喷气气体对低能离子测量的影响。模拟结果显示,靶室残余气体会造成10 keV量级D离子信号在谱仪电场和磁场方向展宽。电场方向的展宽会增加不同荷质比离子谱线发生交叠的风险,而磁场方向的展宽会导致离子能谱展宽。喷气气体会造成离子信号向低能区移动并拖尾,导致测量的离子谱偏离真实的反射离子能谱。  相似文献   

4.
原晓霞  仲佳勇 《物理学报》2017,66(7):75202-075202
利用商用磁流体力学模拟程序USIM对双等离子体团相互作用过程进行了数值模拟,分别考察和比较了双对流等离子体团在外加磁场和无外加磁场情况下,相互作用的物理过程.发现在外加磁场情况下等离子体团相互作用会伴随着磁重联(反向磁场)、磁排斥(同向磁场)以及一些不稳定过程.针对激光产生等离子体团错位相互作用实验,进行了标度模拟,发现外加磁场起着重要作用,进一步表明激光等离子体的磁化特征.研究结果为下一步在神光Ⅱ激光装置进行强磁环境下等离子体实验提供理论指导.  相似文献   

5.
在HL-2A 装置实验中,通过对水平场加入方波扰动,实现了等离子体垂直运动。当等离子体向上垂直运动时,观察到了边缘局域模(ELM)缓解现象。研究发现,等离子体向上运动过程中边缘不断形成新的闭合磁面,导致等离子体体积膨胀,进而使台基宽度增加。此外,ELM 缓解期间杂质和工作气体再循环有所增加。等离子体向上运动过程中体积膨胀、工作气体再循环及杂质增加可能是导致ELM 缓解的主要物理因素。该实验可为未来聚变实验装置ELM 的控制提供一些参考。  相似文献   

6.
李丞  高勋  刘潞  林景全 《物理学报》2014,63(14):145203-145203
对磁场约束下激光诱导铜等离子体光谱强度演化进行了实验研究,分析了在磁场约束环境下的等离子体光谱强度演化过程以及激光能量对光谱增强的影响.实验结果表明:在磁场约束下铜等离子体内原子光谱和离子光谱均有所增强,在磁场约束下Cu I 510.55 nm谱线强度时间演化过程中在1.2—5.7μs时间范围内附近出现双峰结构,在距离靶材表面0—1.4 mm空间范围内磁场约束Cu I 510.55 nm光谱增强明显.Cu I510.55 nm和Cu I 515.32 nm光谱增强因子随激光能量的增加呈单调递减变化,激光能量20 mJ时增强因子最大分别为11和8.对磁场约束下等离子体发射光谱强度增强的物理原因进行了探讨.  相似文献   

7.
林芷伊  简俊涛  王小华  杭纬 《物理学报》2018,67(18):185201-185201
为了了解等离子体中原子与离子组分的膨胀特性及背景气体存在状态下其运动状态的改变规律,设计了一系列实验,并进行了深入探究.采用波长为532 nm的纳秒激光剥蚀铝样品形成等离子体,并使用配有em ICCD检测器的C-T型三光栅单色仪对等离子体进行时序采集,同时使用2400 g·mm~(-1)的光栅替代窄带滤光片进行不同组分成像诊断,得到铝等离子体中Al Ⅰ (396.1 nm), Al Ⅱ (466.3 nm), Al Ⅲ (447.9 nm)的光谱分辨图像.在不同背景气压下采集了等离子体各组分光谱图像,探究背景气体对等离子体演化的影响.结果表明,在等离子体形成过程中,离子组分相对于原子组分分布在羽流前端,且角度分布较小.原子与离子组分的真空膨胀速度均处于10~4m·s~(-1)量级.等离子体中离子组分的运动速度较高,且其运动速度随着离子价态的增加而增大,但在本实验使用的能量密度范围下,随激光能量的变化波动不大.中性原子的运动速度较慢,但随能量的增加而增大.随着膨胀过程的进行,各组分羽流沿样品表面法线方向推进且发射强度逐渐降低,对应的羽流密度和温度也相应降低.环境气压逐渐增大时,各研究组分运动状态与在高真空度下时有明显区别.在气压大于1 Pa后,等离子体与环境气体发生相互渗透,膨胀前端出现的晕影,产生扰动,发生束缚缓速.且等离子羽因气压增大而收缩、与背景气体的碰撞概率增加,使得羽流发射强度加强,等离子体的寿命随之延长.提出的新颖诊断方法与实验所得结果可为等离子体组分动力学过程的研究提供参考.  相似文献   

8.
本文针对典型激光聚变等离子体参数条件,利用动理学粒子模拟程序研究横向磁场和激光带宽在抑制受激拉曼散射(SRS)和受激布里渊散射(SBS)中的作用。模拟发现横向磁场对非均匀等离子体中SRS的非线性自共振增强有显著抑制作用,分析认为横向磁场作用于SRS激发的电子等离子体波(EPW)势阱中的俘获电子,使它们在横向上加速,对EPW造成非线性阻尼,同时减小EPW的非线性频移量,从而缩窄非均匀等离子体中SRS的自共振空间,极大降低SRS反射率。在此基础上利用横向磁场抑制SRS的特性,以及SBS增长对激光带宽的敏感性,提出了利用横向磁场和宽带激光将SRS和SBS同时抑制在低反射率水平的方案。在采用数十特斯拉横向磁场和实验中易于达到的千分之一量级的激光带宽时以及慢性约束聚变(ICF)相关参数下,SBS和SRS的反射率都得到了有效抑制。  相似文献   

9.
激光间接驱动惯性约束聚变实验中,黑腔内情况复杂,在激光烧蚀和辐射烧蚀等的驱动下,光斑区、冕区、纯辐射烧蚀区、射流区的多种等离子体以不同规律运动.发展了X光双能段窄能带的时间分辨成像方法,用以观测黑腔内多种等离子体的运动情况.在真空黑腔中观测到清晰的射流,分析了射流产生机制及其速度;在黑腔中充气,能有效消除射流和抑制冕区等离子体运动,但两种物质界面处可能会出现流体力学不稳定性等现象,分析了界面处的压力平衡关系和密度陡变情况.  相似文献   

10.
超短超强激光因其极端的物理参数范围以及可用于研究相对论等离子体等特征,成为当前激光驱动磁重联物理的研究热点.通常采用两路激光与平面靶相互作用实现激光驱动磁重联,然而在实验诊断中,由于激光等离子体自身的复杂性导致很难辨别磁重联的物理特征.本文对两路短脉冲激光驱动平面靶磁重联进行了数值模拟,重点分析了靶后电势分布特征和磁重联之间的关系.模拟结果显示,靶后电势分布可以直接影响被加速离子在探测面上的空间分布,因此可用来直接诊断短脉冲激光驱动磁重联实验.  相似文献   

11.
本文基于发射光谱法对磁空混合约束铜等离子体光谱特性进行了研究,分析了磁空混合约束条件下铜等离子体光谱强度演化过程以及等离子体光谱轴向和横向分布.实验结果表明,在磁空混合约束和空间约束条件下等离子体光谱均出现增强,对原子光谱Cu I 521.8 nm的最大增强因子分别为2和1.2,磁空混合作用等离子体离子光谱增强效果大于纯空间约束情形.在磁空混合约束作用下,光谱增强在小延时来源于磁场约束产生,而大延时为空间约束产生.结合光学阴影成像法,分析了Cu I 521.8 nm谱线强度的轴向和横向空间强度分布,由于空间约束作用的冲击波反射压缩,使等离子体羽横向膨胀方向存在约束,使等离子体内原子数密度最大空间位置前移,造成了磁空混合约束下Cu I 521.8 nm谱线强度的轴向最大空间位置远离铜表面.  相似文献   

12.
余诗瀚  李晓锋  翁苏明  赵耀  马行行  陈民  盛政明 《强激光与粒子束》2021,33(1):012006-1-012006-17
受激拉曼散射、受激布里渊散射等激光等离子体不稳定性(LPI)是激光等离子体物理领域最重要的研究课题之一。特别是在激光驱动的惯性约束聚变中,LPI会造成相当份额的激光能量损失,破坏辐射对称性,产生的超热电子还会预热靶丸,进而影响压缩效率和聚变能量增益。近期,在美国国家点火装置上开展的实验表明对LPI物理过程的充分理解和有效控制对成功实现ICF点火至关重要。我们对近期LPI方面的一系列研究进展进行了简单介绍与讨论。首先,回顾了描述LPI过程的三波耦合理论,由此得出了LPI在线性阶段的增长率。接着讨论了一些复杂情景下的LPI物理过程,譬如LPI的非线性发展阶段、级联LPI、多光束LPI以及LPI间的非线性耦合。最后,着重介绍了一系列抑制LPI的技术方案,包括束匀滑技术、光束时域整形、宽带激光、偏振旋转激光以及外加磁场等。  相似文献   

13.
孙伟  吕冲  雷柱  仲佳勇 《物理学报》2022,(15):175-185
Rayleigh-Taylor不稳定性(RTI)作为流体和等离子体中基础的物理现象,在天体物理、空间物理以及工程领域扮演着重要角色.尤其在惯性约束核聚变(ICF)研究中, RTI等宏观流体不稳定性是不可回避的物理问题.本文利用开源的辐射磁流体模拟程序FLASH对激光驱动调制靶产生的RTI进行了二维的数值模拟,系统地考察和比较了RTI在无磁场、Biermann自生磁场、不同外加磁场情况下的演化.模拟结果表明, Biermann自生磁场和平行流向的外加磁场在RTI演化过程中基本不会改变RTI的界面动力学,而垂直流向的外加磁场对RTI以及RTI尖钉尾部的Kelvin-Helmholtz涡旋有致稳作用,其中磁压力起主导作用.研究结果为后续开展和ICF相关的靶物理研究提供借鉴,也有助于加深对流体混合过程的理解.  相似文献   

14.
激光等离子体相互作用(LPI)和瑞利-泰勒流体不稳定性(RTI)是影响间接驱动惯性约束聚变成功的两个主要不确定性因素。点火黑腔内环激光通道在靠近黑腔壁的区域是内环激光SRS背反产生与发展的主要区域。内环通道在该区域满足通道内外压力平衡和能量平衡条件。据此提出了间接驱动惯性约束聚变点火黑腔等离子体定标关系。结合描述靶丸内爆飞行阶段物理以及内爆性能的两个定标关系,提出了描述稳定性相对性能的指标。该指标可以指导点火靶设计,为LPI和RTI提供需要的裕量空间,是点火阈值因子(ITF)的补充。  相似文献   

15.
在惯性约束聚变(ICF)电子束快点火物理方案中,需要超强拍瓦激光脉冲驱动MeV能量的强流电子束,并沉积数十kJ能量到压缩氘氚芯区。强流电子束的束流品质是影响点火成功的关键因素之一,为深入了解强流电子束产生物理过程,研制成了三维高性能、适应上万CPU核规模的并行粒子模拟程序,并开展了大规模数值模拟研究,探索了强流电子束的产生机制和输运规律。回顾了近几年来快点火研究团队围绕强流电子束产生和控制开展的研究,介绍了导致束流品质差的两大物理原因:预等离子体效应和束流不稳定性磁场的随机散射。针对这两个物理原因,提出了四种提高强流电子束品质的方法:(1)双层金锥靶减弱预等离子体的负面效应;(2)输运丝产生环向磁场准直强流电子束;(3)外加磁场导引强流电子束提高耦合效率;(4)抑制束流不稳定性以降低随机磁场对电子束流的散射。  相似文献   

16.
常铁强 《物理》1990,19(1):11-14
惯性约束聚变(ICF)是不同于磁约束聚变的另一种实现可控热核反应的方式,作为未来的能源有着光明的前景。目前研究最多的最激光引起的聚变。高功率激光可以在物质中产生千万大气压级的高压,能用于研究高压物理,激光产生的X江可用于研究辐射物理和作为高亮度的X光源。近年来,激光更用于在实验室中产生X光激光。激光与等离子体的相互作用是激光聚变研究的基础,数值模拟则是ICF研究中不可缺少的手段。  相似文献   

17.
点火黑腔二维模拟设计   总被引:2,自引:0,他引:2  
基于二维激光靶耦合流体力学程序,研究设计惯性约束聚变间接驱动点火黑腔的方法.提出先调控X射线驱动温度再调控辐照均匀性的设计顺序.给出总激光功率(特别是主脉冲激光功率)的设计方法.模拟表明,填充气体密度的上限受到槽脉冲P2辐照不均匀性的限制.另外,增加腔长可以抑制靶丸烧蚀层物质的膨胀.最后给出点火黑腔二维设计结果.  相似文献   

18.
 六、各种形式的等离子体诊断技术要想真实地了解聚变装置中的高温等离子体的运动规律,的确是一件相当复杂的事情.发展等离子体诊断技术的目的就是设法利用一切可能利用的技术手段来了解等离子体的内部状态,例如中子温度、离子温度、等离子体电流和磁场的大小及空间分布;了解各种输运过程的特点,各种波动过程和不稳定性的模式及其增长率,以及等离子体的约束时间等.在受控核聚变研究的发展过程中,研制新的诊断技术一直占有相当重要的地位.有些刚出现的新技术很快就被应用到等离子体诊断方面.激光技术便是一个例子.  相似文献   

19.
在100 kJ激光装置上开展了基于三台阶整形脉冲的间接驱动惯性约束聚变内爆实验研究.采用传统充气直柱金壁黑腔设计,在激光脉冲作用后期,腔内金等离子体运动对激光能量沉积和X光辐射场空间分布产生严重扰动,导致靶丸赤道驱动偏弱,形成不可接受的扁圆内爆.本文采用新型的花生腔设计,通过调节外环激光光斑及其产生的金泡的初始位置,补偿和缓解金等离子体运动对黑腔X光辐射分布产生的扰动影响,获得球对称的靶丸辐射驱动.在靶丸驱动辐射温度相同的条件下,由于驱动对称性得到显著改善,实验观测到花生腔内爆热斑接近球形,中子产额的测量结果与内爆一维模拟计算结果的比值(YOS)达到30%;而直柱腔内爆热斑呈现扁圆形状, YOS仅为13%.模拟计算和实验结果一致表明,在三台阶整形脉冲驱动内爆实验中,花生腔设计可以有效抑制外环金泡膨胀加剧产生的不利因素,增强辐射驱动和内爆对称性调控,并提高内爆性能.  相似文献   

20.
当前,激光惯性约束聚变在越来越接近点火的极端能量密度条件下,实验与模拟的偏离逐渐增大,一个关键原因是缺乏对黑腔等离子体状态及其影响黑腔能量学和内爆对称性的细致研究和判断。光学汤姆逊散射主动式、诊断精确、参数完备的优点,使之成为激光惯性约束聚变黑腔等离子体状态参数精密诊断的标准方法。中国面向激光惯性约束聚变研究的光学汤姆逊散射实验技术的发展与神光系列激光装置的建设和在其上开展的物理实验紧密相关。近年来,四倍频汤姆逊散射实验技术在神光III原型和100 kJ激光装置上相继建立,部分实验结果不仅加深了对激光惯性约束聚变靶物理的认识,还反映了实验条件对汤姆逊散射诊断的影响,促进了实验技术的精密化发展。在未来,还需要进一步发展多支路汤姆逊散射、五倍频汤姆逊散射和超热相干汤姆逊散射等新技术,面向点火黑腔条件,大幅提升激光等离子体状态参数的诊断精度,开展新物理机制的探索和研究,在激光惯性约束聚变和其他高能量密度物理科学领域发挥更重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号