首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   3篇
  国内免费   1篇
化学   81篇
晶体学   1篇
力学   1篇
物理学   38篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   13篇
  2012年   9篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有121条查询结果,搜索用时 484 毫秒
1.
2.
A new method for the synthesis of urea‐linked disaccharides in aqueous media has been developed. The key feature of our approach is two strained Steyermark‐type gluco‐ and galactopyranosyl oxazolidinones. Each oxazolidinone is attached to a pyranose ring in a di‐equatorial trans‐annulation framework. Reaction of these oxazolidinones with 4‐aminohexopyranose in water proceeded smoothly to afford the urea‐tethered cellobiose and lactose analogues. The galactose‐type oxazolidinone proved to be more reactive than the glucose‐type, which is explained by the presence of an axial hydroxy group at C4 in the former.  相似文献   
3.
4.
This contribution reports ethylene and propylene polymerization behavior of a series of Ti complexes bearing a pair of phenoxy–imine chelate ligands. The bis(phenoxy–imine)Ti complexes in conjunction with methylalumoxane (MAO) can be active catalysts for the polymerization of ethylene. Unexpectedly, this C2 symmetric catalyst produces syndiotactic polypropylene. 13C NMR spectroscopy has revealed that the syndiotacticity arises from a chain-end control mechanism. Substitutions on the phenoxy–imine ligands have substantial effects on both ethylene and propylene polymerization behavior of the complexes. In particular, the steric bulk of the substituent ortho to the phenoxy–oxygen is fundamental to obtaining high activity and high molecular weight for ethylene polymerization and high syndioselectivity for the chain-end controlled propylene polymerization. The highest ethylene polymerization activity, 3240 kg/mol-cat h, exhibited by a complex having a t-butyl group ortho to the phenoxy–oxygen, represents one of the highest reported to date for Ti-based non-metallocene catalysts. Additionally, the polypropylene produced exhibits a Tm, 140 °C, and syndioselectivity, rrrr 83.7% (achieved by a complex bearing a trimethylsilyl group ortho to the phenoxy–oxygen) that are among the highest for polypropylenes produced via a chain-end control mechanism. Hence, the bis(phenoxy–imine)Ti complexes are rare examples of non-metallocene catalysts that are useful for the polymerization of not only ethylene but also propylene.  相似文献   
5.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   
6.
The effects of the addition of silica nanoparticles (SNPs) on wettability of regioregular poly(3‐hexylthiophene) (P3HT) organic semiconductor solutions on hydrophobic substrates and the carrier mobility in organic field‐effect transistors (OFETs) made of these films are investigated. The dewetting of films made from P3HT solutions on hydrophobic substrates modified with octadecyltrichlorosilane (ODTS) is markedly suppressed after the addition of SNPs with phenyl surfactants. This enables us to fabricate continuous P3HT/SNPs films with high crystallinity by the conventional spin‐coating technique, leading to higher mobility compared with P3HT FETs fabricated on non‐modified substrates. Moreover, the addition of SNPs with larger diameters compensates for the degradation of mobility associated with the increase in the concentration of SNPs. Solution‐processed P3HT/SNPs FETs on ODTS‐modified substrates exhibit a field‐effect mobility of 1.3 × 10?2 cm2 V?1 s?1, which is almost comparable to that of P3HT FETs without SNPs (2.1 × 10?2 cm2 V?1 s?1). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 509–516  相似文献   
7.
Trifluoromethylation of carbonyl compounds using (trifluoromethyl) trimethylsilane catalyzed by 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) afforded the corresponding α-trifluoromethyl alcohols in good to excellent yields under mild reaction conditions.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   
8.
For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.  相似文献   
9.
10.
The shape and porosity of hematite particles, produced from a forced hydrolysis reaction of acidic FeCl3 solution, were controlled by using Pluronics as nonionic surfactants (0–4 wt.%). Pluronics possess a nominal formula of (PEO) x –(PPO) y –(PEO) x . The effect of Pluronics with low hydrophilicity (PEO contents were less than 50 mol%) was small and provided spherical particles the same as that of the system without Pluronics (control system). However, Pluronics with higher hydrophilicity (PEO contents were over 50 mol%) gave ellipsoidal hematite particles. This effect on the particle morphology was enhanced by an increase in their molecular weight. On the other hand, the Pluronics possessing an opposite nominal formula [(PPO) x –(PEO) y –(PPO) x ] exhibited no effect on the particle shape; it only depressed phase transformation from ?-FeOOH to hematite. Not only the morphology but also the pore size of hematite particles was controlled from nonporous to mesoporous by using Pluronics. The N2 adsorption experiment and t-plot curve analysis revealed that the hematite particles changed from mesoporous to microporous by an increase in the concentration of Pluronics. On the other hand, in the presence of very low amounts of Pluronics molecules (0.1 wt.%), nonporous hematite particles were produced via strong aggregation of PN particles by their hydrogen bonding between hydroxyl and PEO or PPO groups. The dynamic light scattering measurement for the system with Pluronics clarified the existence of polynuclear (PN) particles with a hydrodynamic particle diameter (D a) of ca. 40 nm after these were aged for 6 h. The size of PN particles remained constant at ca. 40 nm during aging time of 12 h~3 days, but the scattering intensity was decreased. This decrease in the scattering intensity reveals that the number of PN particles is reduced by aggregation. The transmission electron microscope, inductively coupled plasma atomic emission spectroscopy, and total organic carbon analysis measurements employed on the systems produced for ellipsoidal particles elucidated that the formation of ellipsoidal hematite particles is attributed to the adsorption of Pluronics on the surfaces of PN and growing hematite particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号