首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

2.
The nitrosyl in [IrCl5(NO)]- is probably the most electrophilic known to date. This fact is reflected by its extremely high IR frequency in the solid state, electrochemical behavior, and remarkable reactivity in solution. PPh4[IrCl5(NO)] forms a crystal in which the [IrCl5(NO)]- anions are in a curious wire-like linear arrangement, in which the distance between the N--O moiety of one anion and the trans chloride of the upper one nearby is only 2.8 A. For the same complex [IrCl5(NO)]- but with a different counterion, Na[IrCl5(NO)], the anions are stacked one over the other in a side-by-side arrangement. In this case the electronic distribution can be depicted as the closed-shell electronic structure Ir III-NO+, as expected for any d(6) third-row transition metal complex. However, in PPh4[IrCl5(NO)] an unprecedented electronic perturbation takes place, probably due to NO*-Cl- acceptor-donor interactions among a large number of [IrCl5(NO)]- units, favoring a different electronic distribution, namely the open-shell electronic structure Ir IV-NO*. This conclusion is based on XANES experimental evidence, which demonstrates that the formal oxidation state for iridium in PPh4[IrCl5(NO)] is +4, as compared with +3 in K[IrCl5(NO)]. In agreement, solid-state DFT calculations show that the ground state for [IrCl5(NO)]- in the PPh4+ salt comprises an open-shell singlet with an electronic structure which encompasses half of the spin density mainly localized on a metal-centered orbital, and the other half on an NO-based orbital. The electronic perturbation could be seen as an electron promotion from a metal-chloride to a metal-NO orbital, due to the small HOMO-LUMO gap in PPh4[IrCl5(NO)]. This is probably induced by electrostatic interactions acting as a result of the closeness and wire-like spatial arrangement of the Ir metal centers, imposed by lattice forces due to pi-pi stacking interactions among the phenyl rings in PPh4+. Experimental and theoretical data indicate that in PPh4[IrCl5(NO)] the Ir-N-O moiety is partially bent and tilted.  相似文献   

3.
Treatment of [Cp*IrH(SH)(PMe3)] (Cp* = eta5-C5Me5) with [IrCl2(NO)(PPh3)2] in the presence of triethylamine yielded the sulfido-bridged Ir(II)Ir0 complex [Cp*Ir(PMe3)(mu-S)Ir(NO)(PPh3)], which further reacted with I2 and triflic acid to give the diiodo complex [Cp*Ir(PMe3)(mu-I)(mu-S)IrI(NO)(PPh3)] and the hydrido complex [Cp*Ir(PMe3)(mu-H)(mu-S)Ir(NO)(PPh3)][OSO2CF3], respectively.  相似文献   

4.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

5.
Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing ethanol in the presence of a base (NEt(3)) affords complexes of three different types, viz. [Ir(PPh(3))(2)(NO-R)(H)Cl] (R = OCH(3), CH(3), H, Cl and NO(2)), [Ir(PPh(3))(2)(NO-R)(H)(2)] and [Ir(PPh(3))(2)(CNO-R)(H)]. Structures of the [Ir(PPh(3))(2)(NO-Cl)(H)Cl], [Ir(PPh(3))(2)(NO-Cl)(H)(2)] and [Ir(PPh(3))(2)(CNO-Cl)(H)] complexes have been determined by X-ray crystallography. In the [Ir(PPh(3))(2)(NO-R)(H)Cl] and [Ir(PPh(3))(2)(NO-R)(H)(2)] complexes, the 2-(arylazo)phenolate ligands are coordinated to the metal center as monoanionic bidentate N,O-donors, whereas in the [Ir(PPh(3))(2)(CNO-R)(H)] complexes, they are coordinated to iridium as dianionic tridentate C,N,O-donors. In all three products formed in ethanol, the two PPh(3) ligands are trans. Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing toluene in the presence of NEt(3) affords complexes of two types, viz. [Ir(PPh(3))(2)(CNO-R)(H)] and [Ir(PPh(3))(2)(CNO-R)Cl]. Structure of the [Ir(PPh(3))(2)(CNO-Cl)Cl] complex has been determined by X-ray crystallography, and the 2-(arylazo)phenolate ligand is coordinated to the metal center as a dianionic tridentate C,N,O-donor and the two PPh(3) ligands are cis. All of the iridium(III) complexes show intense MLCT transitions in the visible region. Cyclic voltammetry shows an Ir(III)-Ir(IV) oxidation on the positive side of SCE and an Ir(III)-Ir(II) reduction on the negative side for all of the products.  相似文献   

6.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   

7.
Two novel iridium(III) complexes, [Ir(dfppy)(2)(pmc)] and [Ir(ppy)(2)(pmc)] (dfppy = 2-(4',6'-difluoro-phenyl)pyridine, ppy = 1-phenyl-pyridine), were designed and synthesized using 2-carboxyl-pyrimidine (Hpmc) as an ancillary ligand. Single crystals were obtained and characterized by single crystal X-ray diffraction. The tetrametallic complexes {[(C^N)(2)Ir(μ-pmc)](3)EuCl(3)} (C^N = dfppy, ppy) were synthesized using the iridium(III) complexes as "ligands". Photophysical and theoretical studies indicate that [Ir(dfppy)(2)(pmc)] is more suitable for sensitizing the emission of Eu(III) ions than [Ir(ppy)(2)(pmc)].  相似文献   

8.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

9.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

10.
Reaction of excess NO with the S = 3/2 Fe(III) complex (Et4N)2[Fe(PhPepS)(Cl)] (1) in protic solvents such as MeOH affords the {Fe-NO}(7) nitrosyl (Et(4)N)(2)[Fe(PhPepS)(NO)] (2). This distorted square-pyramidal S = 1/2 complex, a product of reductive nitrosylation, is the first example of an {Fe-NO}7 nitrosyl with carboxamido-N and thiolato-S coordination. When the same reaction is performed in aprotic solvents such as MeCN and DMF, the product is a dimeric diamagnetic {Fe-NO}6 complex, (Et4N)2-[{Fe(PhPepS)(NO)}2] (3). Both electrochemical and chemical oxidation of 2 leads to the formation of 3 via a transient five-coordinate {Fe-NO}6 intermediate. The oxidation is NO-centered. The ligand frame is not attacked by excess NO in these reactions.  相似文献   

11.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom.  相似文献   

12.
The first neutral, [IrClF(2)(NHC)(COD)] and [IrClF(2)(CO)(2)(NHC)] (NHC = IMes, IPr), and cationic, [IrF(2)py(IMes)(COD)][BF(4)] and [IrF(2)L(CO)(2)(NHC)][BF(4)] (NHC = IMes, L = PPh(2)Et, PPh(2)CCPh, py; NHC = IPr, L = py), NHC iridium(III) fluoride complexes, have been synthesised by the xenon difluoride oxidation of iridium(I) substrates. The stereochemistries of these iridium(III) complexes have been confirmed by multinuclear NMR spectroscopy in solution and no examples of fluoride-trans-NHC arrangements were observed. Throughout, CO was found to be a better co-ligand for the stabilisation of the iridium(III) fluoride complexes than COD. Attempts to generate neutral trifluoroiridium(III) complexes, [IrF(3)(CO)(NHC)], via the ligand substitution reaction of [IrF(3)(CO)(3)] with the free NHCs were unsuccessful.  相似文献   

13.
Reaction of Ir(NO)(PPh3)3 with anhydrous HCl results in addition of 2 equivalents of HCl with formal protonation of the nitrosyl ligand, affording the unusual six-co-ordinate nitroxyl complex cis,trans-IrHCl2(NH=O)(PPh3)2.  相似文献   

14.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

15.
The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.  相似文献   

16.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

17.
The neutral, five-coordinate platinum nitrosyl compounds [Pt(C(6)F(5))(3)(L)(NO)] (2) [L=CNtBu (2 a), NC(5)H(4)Me-4 (2 b), PPhMe(2) (2 c), PPh(3) (2 d) and tht (2 e)] have been prepared by the reaction of [NBu(4)][Pt(C(6)F(5))(3)(L)] (1) with NOClO(4) in CH(2)Cl(2). The ionic compound [N(PPh(3))(2)][Pt(C(6)F(5))(4)(NO)] (4) has been prepared in a similar way starting from the homoleptic species [N(PPh(3))(2)](2)[Pt(C(6)F(5))(4)] (3). Compounds 2 and 4 are all diamagnetic with [PtNO](8) electronic configuration and show nu(NO) stretching frequencies at around 1800 cm(-1). The crystal and molecular structures of 2 c and 4 have been established by X-ray diffraction methods. The coordination environment for the Pt center in both compounds can be described as square pyramidal (SPY-5). Bent nitrosyl coordination is observed in both cases with Pt-N-O angles of 120.1(6) and 130.2(7) degrees for 2 c and 4, respectively. The bonding mechanism of the nitrosyl ligand coordinated to various model [Pt(II)R(4)](2-) (R=H, Me, Cl, CN, C(6)F(5) or C(6)Cl(5)) and [Pt(C(6)F(5))(3)(L)](-) (L=CNMe, PH(3)) systems has been studied by density functional calculations at the B3LYP level of theory, using the SDD basis set. The R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO interactions generally involve two components: i) a direct Pt-NO bonding interaction and ii) multicenter-bonding interactions between the N atom of the NO ligand and the donor atoms of the R and L ligands. Moreover, with the more complex R groups, C(6)F(5) or C(6)Cl(5), a third component has been found to arise, which involves multicenter electrostatic interactions between the positively charged NO ligand and the negatively charged halo-substituents in the ortho-position of the C(6)X(5) groups (X=F, Cl). The contribution of each component to the Pt-NO bonding in R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO compounds seems to be modulated by the electronic and steric effects of the R and L ligands.  相似文献   

18.
A series of iridium tetrahydride complexes [Ir(H)4(PSiP‐R)] bearing a tridentate pincer‐type bis(phosphino)silyl ligand ([{2‐(R2P)C6H4}2MeSi], PSiP‐R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP‐R)] with Me4N ⋅ BH4 under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)–dinitrogen complexes, [Ir(H)2(N2)(PSiP‐R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively. Attempted substitution of the dinitrogen ligand in [Ir(H)2(N2)(PSiP‐Cy)] with PMe3 required heating at 150 °C to give the expected [Ir(H)2(PMe3)(PSiP‐Cy)] and a trigonal bipyramidal iridium(I)–dinitrogen complex, [Ir(N2)(PMe3)(PSiP‐Cy)]. The reaction of [Ir(H)4(PSiP‐Cy)] with three equivalents of 2‐norbornene (nbe) in benzene afforded [IrI(nbe)(PSiP‐Cy)] in a high yield, while a similar reaction of [Ir(H)4(PSiP‐R)] with an excess of 3,3‐dimethylbutene (tbe) in benzene gave the C H bond activation product, [IrIII(H)(Ph)(PSiP‐R)], in high yield. The oxidative addition of benzene is reversible; heating [IrIII(H)(Ph)(PSiP‐Cy)] in the presence of PPh3 in benzene resulted in reductive elimination of benzene, coordination of PPh3, and activation of the C H bond of one aromatic ring in PPh3. [IrIII(H)(Ph)(PSiP‐R)] catalyzed a direct borylation reaction of the benzene C H bond with bis(pinacolato)diboron. Molecular structures of most of the new complexes in this study were determined by a single‐crystal X‐ray analysis.  相似文献   

19.
The hydridoirida-β-diketone [IrHCl{(PPh(2)(o-C(6)H(4)CO))(2)H}] (1) reacts with benzylamine (C(6)H(5)CH(2)NH(2)) to give the hydridoirida-β-ketoimine [IrHCl{(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CNCH(2)C(6)H(5)))H}] (2), stabilized by an intramolecular hydrogen bond. 2 reacts with water to undergo hydrolysis and amine coordination giving hydridodiacylamino [IrH(PPh(2)(o-C(6)H(4)CO))(2)(C(6)H(5)CH(2)NH(2))] (3). Cyclohexylamine or dimethylamine lead to hydridodiacylamino [IrH(PPh(2)(o-C(6)H(4)CO))(2)L] (4-5). In chlorinated solvents hydridodiacylamino complexes undergo exchange of hydride by chloride to afford [IrCl(PPh(2)(o-C(6)H(4)CO))(2)L] (6-9). The reaction of 1 with hydrazine (H(2)NNH(2)) gives hydridoirida-β-ketoimine [IrHCl{(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CNNH(2)))H}] (10), fluxional in solution with values for ΔH(?) of 2.5 ± 0.3 kcal mol(-1) and for ΔS(?) of -32.9 ± 3 eu. A hydrolysis/imination sequence can be responsible for fluxionality. 2-Aminopyridines (RHNC(5)H(3)R'N) react with 1 to afford cis-[IrCl(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CHNRC(5)H(3)R'N))] (R = R' = H (11), R = CH(3), R' = H (12), R = H, R' = CH(3) (13)) containing new terdentate PCN ligands in a facial disposition and cis phosphorus atoms as kinetic products. The formation of 11-13 requires imination of the hydroxycarbene moiety of 1, coordination of the nitrogen atom of pyridine to iridium, and iridium to carbon hydrogen transfer. In refluxing methanol, complexes 11-13 isomerize to afford the thermodynamic products 14-16 with trans phosphorus atoms. Chloride abstraction from complexes [IrCl(PPh(2)(o-C(6)H(4)CO))(PPh(2)(o-C(6)H(4)CHNRC(5)H(4)N))] (R = H or CH(3)) leads to decarbonylation of the acylphosphine chelating group to afford cationic complexes [Ir(CO)(PPh(2)(o-C(6)H(4)))(PPh(2)(o-C(6)H(4)CHNRC(5)H(4)N))]A, 17 (R = H, A = ClO(4)) and 18 (R = CH(3), A = BF(4)) as a cis/trans = 4:1 mixture of isomers. Single crystal X-ray diffraction analysis was performed on 6, 9, 13, and 14.  相似文献   

20.
Reactions of [(Cp*Ir)2(mu-dmpm)(mu-H)2]2+ (1) with NaOtBu in aromatic solvent at room temperature give [(Cp*Ir)(H)(mu-dmpm)(mu-H)(Cp*Ir)(Ar)]+ [Ar = Ph (3), p-Tol (4a), m-Tol (4b), 2-furanyl (5a), 3-furanyl (5b)] via intermolecular aromatic C-H activation. Treatment of [(Cp*Ir)2(mu-dppm)(mu-H)2]2+ (2) with base (Et2NH) results in intramolecular C-H activation of the phenyl group in the dppm ligand to give [(Cp*Ir)(H){mu-PPh(C6H4)CH2PPh2}(mu-H)(Cp*Ir)]+ (6). The structures of 3, 5a, and 6 have been determined by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号