首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   3篇
综合类   2篇
物理学   4篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
采用组合的量子化学ONIOM(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWCNT(9,9)内α-丙氨酸的分子结构和手性转变机制.为得到相对高水平的体系能量和反应势能面,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平上计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWCNT(9,9)碳纳米管内时,键长均略缩短,骨架原子的二面角基本不变.反应路径研究发现,α-丙氨酸分子在SWCNT(9,9)内的手性转变路径有2条与单体情况大致相同.不存在单体情况的有羰基H和甲基H协同转移过程的反应通道.对手性转变反应过程势能面的计算发现,S型α-丙氨酸在SWCNT(9,9)内向R型转变与单体α-丙氨酸手性转变反应过程的主要能垒相比较,路径1的最高能垒同样是由在纸外面的氢从手性碳直接到羰基氧的过渡态产生的,能垒基本不变;路径2是氢先在羧基内转移,此过程的能垒由194.5降到137.6kJ·mol-1.而后纸外面的氢从手性碳转移到羰基,此过程的能垒由317.1降到302.9kJ·mol-1.研究结果表明,SWCNT(9,9)对α-丙氨酸的限域影响使手性转变反应过程的某些能垒降低,改变或部分改变了反应路径.  相似文献   
2.
基于密度泛函理论对水环境下布洛芬分子的手性转变机制进行研究。通过寻找水与S和R型布洛芬分子的复合物、水环境下布洛芬分子异构的过渡态及中间体等极值点的结构,绘制了水环境下布洛芬分子手性转变路径的氢转移和中间体异构过程的势能面。结果表明:水环境下布洛芬分子手性转变有两条路径。其氢转移过程均可通过单个和两个水分子作为桥梁实现,最高能垒均来自于手性碳的氢向羰基氧的转移过程,并且都是以2H2O为桥梁时能垒最低。氢在羧基内转移后,手性碳的H再向羰基O转移的能垒为38.25Kcal/mol。手性碳的H先向羰基O转移过程的能垒为40.87Kcal/mol。这都比孤立条件下的能垒73.54 Kcal/mol降低了许多。揭示了水分子在布洛芬分子对映体手性转变过程中的催化作用,说明了布洛芬在体内可以缓慢地实现手性转变的一个原因,同时为进一步实现手性分子的对映体转变调控提供了理论参考。  相似文献   
3.
基于密度泛函理论,对孤立条件下的α-丙氨酸分子手性转变过程和水分子对此过程中氢转移的催化作用进行了研究.通过寻找过渡态和中间体等极值点的结构,绘制了孤立条件下α-丙氨酸分子手性转变的过程以及水环境中重要氢转移过程的势能面.结果表明,孤立条件下α-丙氨酸分子手性转变有2条路径:路径1由3个中间体和4个过渡态组成,最高能垒337.4kJ·mol-1来自羧基的氢向甲基迁移和甲基的氢向手性碳迁移的协同过程.路径2由4个中间体和5个过渡态组成,最高能垒316.3kJ·mol-l来自手性碳上的氢向羧基上氧的转移.单个水分子和2个水分子作为氢转移的桥梁,使路径2的最高能垒从316.3kJ·mol-1分别降到198.0和167.8kJ·mol-1.  相似文献   
4.
利用直流电弧等离子体方法制备了氮化铝纳米粉,用行星式球磨机制备纳米级的氮化硼粉,将这两种纳米粉均匀混合,经过5 GPa、1500 ℃的高温高压处理,最终制备出AlN/BN纳米复相陶瓷,对合成的产物进行了X射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)的分析,得到样品的结构和形貌特征,结果表明合成产物为AlN/BN纳米复相陶瓷.   相似文献   
5.
利用基于密度泛函理论的第一性原理计算,得到了常压下镧系氮化物的晶格常数,以及在压力作用下镧系氮化物从NaCl型结构(B1)到CsCl型结构(B2)转变的压力。并把考虑电子自旋极化与不考虑电子自旋极化作用的计算结果进行了对比,分析了4f电子对镧系氮化物这些强关联体系的压致结构转变压力的影响。结果显示:5个镧系元素的氮化物(GdN、TbN、DyN、HoN和ErN)从B1相到B2相转变的压力与电子自旋极化作用关系很大,而其它镧系氮化物的相变压力与电子自旋极化作用的关系很小。  相似文献   
6.
基于密度泛函理论对水环境下布洛芬分子的手性转变机制进行研究。通过寻找水与S和R型布洛芬分子的复合物、水环境下布洛芬分子异构的过渡态及中间体等极值点的结构,绘制了水环境下布洛芬分子手性转变路径的氢转移和中间体异构过程的势能面。结果表明:水环境下布洛芬分子手性转变有两条路径。其氢转移过程均可通过单个和两个水分子作为桥梁实现,最高能垒均来自于手性碳的氢向羰基氧的转移过程,并且都是以2H2O为桥梁时能垒最低。氢在羧基内转移后,手性碳的H再向羰基O转移的能垒为38.25Kcal/mol。手性碳的H先向羰基O转移过程的能垒为40.87Kcal/mol。这都比孤立条件下的能垒73.54 Kcal/mol降低了许多。揭示了水分子在布洛芬分子对映体手性转变过程中的催化作用,说明了布洛芬在体内可以缓慢地实现手性转变的一个原因,同时为进一步实现手性分子的对映体转变调控提供了理论参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号