首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2022年   2篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Guo-Bao Feng 《中国物理 B》2022,31(10):107901-107901
As a typical two-dimensional (2D) coating material, graphene has been utilized to effectively reduce secondary electron emission from the surface. Nevertheless, the microscopic mechanism and the dominant factor of secondary electron emission suppression remain controversial. Since traditional models rely on the data of experimental bulk properties which are scarcely appropriate to the 2D coating situation, this paper presents the first-principles-based numerical calculations of the electron interaction and emission process for monolayer and multilayer graphene on silicon (111) substrate. By using the anisotropic energy loss for the coating graphene, the electron transport process can be described more realistically. The real physical electron interactions, including the elastic scattering of electron—nucleus, inelastic scattering of the electron—extranuclear electron, and electron—phonon effect, are considered and calculated by using the Monte Carlo method. The energy level transition theory-based first-principles method and the full Penn algorithm are used to calculate the energy loss function during the inelastic scattering. Variations of the energy loss function and interface electron density differences for 1 to 4 layer graphene coating GoSi are calculated, and their inner electron distributions and secondary electron emissions are analyzed. Simulation results demonstrate that the dominant factor of the inhibiting of secondary electron yield (SEY) of GoSi is to induce the deeper electrons in the internal scattering process. In contrast, a low surface potential barrier due to the positive deviation of electron density difference at monolayer GoSi interface in turn weakens the suppression of secondary electron emission of the graphene layer. Only when the graphene layer number is 3, does the contribution of surface work function to the secondary electron emission suppression appear to be slightly positive.  相似文献   
2.
磁控溅射铂抑制镀银表面的二次电子发射   总被引:1,自引:0,他引:1       下载免费PDF全文
何鋆  俞斌  王琪  白春江  杨晶  胡天存  谢贵柏  崔万照 《物理学报》2018,67(8):87901-087901
降低表面的二次电子产额是抑制微波部件二次电子倍增效应和提升功率阈值的有效途径之一,目前主要采用在表面构造陷阱结构和沉积非金属薄膜的方法降低二次电子产额,其缺点是会改变部件的电性能.针对此问题,采用在表面沉积高功函数且化学惰性的金属薄膜来降低二次电子产额.首先,采用磁控溅射方法在铝合金镀银样片表面沉积100 nm铂,测量结果显示沉积铂后样片的二次电子产额最大值由2.40降至1.77,降幅达26%.其次,用相关唯象模型对二次电子发射特性测量数据进行了拟合,获得了在40-1500 eV能量范围内能够准确描述样片二次电子产额特性的Vaughan模型参数,以及在0-50 eV能量范围内能够很好地拟合二次电子能谱曲线的Chung-Everhart模型参数.最后,将获得的实验数据和相关拟合参数用于Ku频段阻抗变换器的二次电子倍增效应功率阈值仿真研究,结果表明通过沉积铂可将部件的功率阈值由7500 W提升至36000 W,证实了所提方法的有效性.研究结果为金属材料二次电子发射特性的研究提供实验数据参考,对抑制大功率微波部件二次电子倍增效应具有参考价值.  相似文献   
3.
铁氧体环行器是承载航天器微波系统大功率的关键器件,其大功率微放电效应是影响航天器在轨安全、可靠运行的瓶颈问题。从影响微放电效应的关键因素——二次电子发射特性出发,提出铁磁性微波部件微放电效应物理演变模型,揭示了铁磁性微波部件内部初始自由电子与二次电子运动的空间规律;通过改变铁磁性微波部件表面二次电子发射特性,揭示了铁磁性微波部件抗微放电优化设计的物理原理。在S频段铁氧体环行器中验证了基于表面二次电子发射特性的微放电效应抑制,将器件的微放电阈值从380 W提高至3400 W以上,提升效率大于900%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号