首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10362篇
  免费   508篇
  国内免费   93篇
化学   7295篇
晶体学   66篇
力学   219篇
数学   1593篇
物理学   1790篇
  2023年   54篇
  2022年   89篇
  2021年   229篇
  2020年   193篇
  2019年   217篇
  2018年   189篇
  2017年   160篇
  2016年   349篇
  2015年   300篇
  2014年   353篇
  2013年   620篇
  2012年   689篇
  2011年   797篇
  2010年   500篇
  2009年   406篇
  2008年   682篇
  2007年   564篇
  2006年   576篇
  2005年   532篇
  2004年   491篇
  2003年   377篇
  2002年   351篇
  2001年   155篇
  2000年   148篇
  1999年   130篇
  1998年   103篇
  1997年   84篇
  1996年   126篇
  1995年   88篇
  1994年   83篇
  1993年   63篇
  1992年   63篇
  1991年   58篇
  1990年   52篇
  1989年   53篇
  1988年   46篇
  1987年   45篇
  1986年   39篇
  1985年   63篇
  1984年   56篇
  1983年   32篇
  1982年   59篇
  1981年   54篇
  1980年   31篇
  1979年   51篇
  1978年   49篇
  1977年   42篇
  1976年   46篇
  1975年   28篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 34 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.  相似文献   
3.
4.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
5.
A photoluminescent bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(MeOH)2(H2O)](ClO4)4 ( 1 , bdppthi=N,N’-bis(diphenylphosphanylmethyl)-tetrahydroimidazole} was synthesized from the PNNP type ligand bdppthi generated in-situ. Upon excitation at 365 nm, 1 exhibited strong phosphorescent emission at 630 nm, which was selectively quenched by NH3 in air or water. The sensing of NH3 was rapid and recoverable, with detection limits of 53 ppm (v/v) in N2 and 21 μmol/L (0.36 ppm, w/w) for NH3 ⋅ H2O in water. Cluster 1 could potentially serve as a bifunctional chemical sensor for the efficient detection of ammonia in waste-gas and waste-water.  相似文献   
6.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
7.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.  相似文献   
8.
9.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
10.
Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号