首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   18篇
化学   20篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2009年   2篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
采用遗传算法构建了27种人类腺苷受体拮抗剂1,2,4-三唑并[1,5-α]喹喔啉衍生物与受体之间的亲和性的QSAR模型.为得到理想模型,计算了拓扑学、热力学、空间、电子拓扑状态和量子化学描述符.结合这些参数得到最终模型:ENpKi=13.407-0.027*FC-8-0.033*FC-8 0.845*Atype_C_28-19.493*Shadow_XYfrac.计算得到的统计学指标为:LOF=0.291,r2=0.766,ra2dj=0.723,F-test=17.974,PRESS=3.469,CV-r2=0.791.通过对模型进行分析,得到如下结论:降低C-8位亲电、亲核原子的前线电子密度的权重和分子在XY平面的投影分数,增加疏水性原子类型描述符Atpye_C_28的值,都对增加化合物分子与受体的亲和性有利.利用此模型合理的设计了两个新的化合物,并预测具有较高的结合活性.该研究为喹喔啉衍生物作为人类A3腺苷受体拮抗剂的结构改造提供理论指导,并为进一步研究受体与配体亲和性机理奠定理论基础.  相似文献   
2.
采用密度泛函理论研究了PtnRum (n+m=3, n≠0)团簇活化甲醇C―H和O―H键的反应活性和机理. 分别给出以O―H和C―H键活化为初始步骤的势能曲线. 计算结果表明反应是以C―H键的活化为初始步骤; 三种团簇与甲醇反应的活性顺序为Pt2Ru>Pt3>PtRu2. 前线轨道分析表明PtnRum团簇活化初始的C―H和O―H键的活化过程是质子转移(PT). 此外还讨论了溶剂化对反应的影响. 本研究可为C―H键和O―H键的活化提供更深入的理解, 为甲醇活化反应催化剂选择以及其使用条件的优化提供新思路.  相似文献   
3.
采用旋转平移块方法对Ca2+/豆蔻酰基开关进行了正则模式分析(NMA). 研究结果表明, 恢复蛋白(Recoverin)的T态的N-末端与C-末端易于发生刚体逆向旋转, 一旦结合Ca2+, 很容易发生构象变化, 形成具有双向构象转变特征的I态. I态是一个中间结构, 既可以发生构象回转到T态, 又可以继续相对旋转到R态, 使豆蔻酰基完全暴露, 从而行使其信号传导生物功能. 从低频振动模式分析可以看出, 恢复蛋白具有构象转变这一本质属性.  相似文献   
4.
采用密度泛函理论方法,在B3LYP/6-31G(d)理论水平下,计算了45种苯砜基羧酸酯化合物的量子化学参数.经多元线性回归分析,得到描述此类化合物对发光菌急性毒性的模型:-lgEC50=3.02 6.24EHOMO-0.091μ-0.006P 1.22q(1)-6.67q(10),其中R=0.92,r2adj=0.82,F=42.0,q2=0.79.通过对模型进行分析,得到如下结论:苯环和酯基取代基的电负性越大,分子体积越小,毒性越大.该研究为探讨此类化合物急性毒性的机理奠定了理论基础.  相似文献   
5.
C2H与HO2双自由基反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用量子化学从头算和密度泛函理论(DFT)对C2H与HO2双自由基的单重态反应进行了研究.在UB3LYP/6-311G水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型.在CCSD(T)/6-311G**水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,反应物中自由基C2H的边端C进攻自由基HO2的边端O是主要的进攻方式.首先形成了中间体1(HCCOOH),由此经过不同的反应通道可以得到主要产物P1,次要产物P2,P3和P5.生成P1的反应热为-814.40kJ/mol.自由基C2H的中间C进攻自由基HO2的边端O是次要的进攻方式,可以得到产物P4和P6.根据势能面分析,所有反应均是放热反应.  相似文献   
6.
贫氢分子CnH是燃烧火焰、行星大气中的重要的中间体.这些分子与其它一些分子或自由基的反应在星际化学中起着非常重要的作用.虽然这些分子的电子结构和光谱性质已经进行了广泛的研究,但是研究这些反应的机理和动力学性质也是亟需的.因此,我们采用直接动力学方法对线性分子丁二炔自由基C4H(CCCCH)夺氢气(H2)分子中HAT的反应的微观机理和动力学性质进行了理论研究.本研究分别在BB1K/6-311+G(2d,2p),B3LYP/6-311+G(2d,2p)和M06-2x/6-311+G(2d,2p)水平上优化得到了各稳定点的结构及振动频率.为了得到更为可靠的反应能量和势能面信息,在BB1K/6-311+G(2d,2p)优化结构的基础上用CCSD(T)/aug-cc-pVTZ水平进行了单点能量校正.对于此反应研究了两条不同的氢吸附通道,C4H(C1C2C3C4H)中的C1和C4分别吸氢,即通道1(R1)和通道2(R2).计算得出:通道1和通道2的能垒分别为3.58 kcal/mol和26.56 kcal/mol,结果表明C4H中C1端吸氢是主要通道.反应过程中的电子转移可以为理解氢原子转移(HAT)提供重要的线索,因此,我们利用NBO对反应过程中的电子转移行为进行了详细的分析.本工作运用经典过渡态理论(VTST)与变分过渡态理论(CVT)和变分过渡态理论结合小曲率隧道效应校正(CVT/SCT)的方法计算了该反应在40~1000 K温度区间的速率常数.除对于最低频率的配分函数采用了阻尼内转动近似外,其它频率都采用谐振子模型处理.计算得到的总的CVT/SCT反应速率常数与已有的实验值符合得很好.我们还提供了40~1000K温度范围内的三参数Arrhenius表达式.这些公式有利于今后在较宽的温度范围内迄今没有实验数据的反应的研究.  相似文献   
7.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   
8.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   
9.
铁及其复合物催化的C—X键功能化日益引起人们的重视.采用密度泛函理论(DFT),在B3LYP/def2-SVP水平下详细研究了Fe+与CH3X(X=Cl,Br,I)的反应活性和机理.计算结果表明标题反应存在两种反应机制,即插入机制和SN2机制.从机理上来看,在插入机理中,反应都始于Fe+离子从侧面进攻CH3X,生成产物FeX+和CH3;而在SN2机制中,反应则始于Fe+离子从背后进攻CH3X,生成产物3FeCH+和X.从我们的计算可以看出,四重态或六重态下的Fe+离子在C—X键活化中展现了截然不同的催化活性;在所有通道中,都以四重态为主导;SN2机制中相对较高的决速能垒使其丧失了竞争性.再者,计算表明在所有的插入机制中,所有通道都是放热的,而在SN2机制中,仅有X=I时,反应是放热的.此外,计算表明这些反应属于两态反应活性,两种机制中,在反应的入口和出口存在最小能量交叉点.此外,反应途径电子结构追踪分析表明自旋极化对能量影响较大,调控着反应采取的反应通道和主副产物比例.通过本文的理论研究,尤其是详细的电子结构分析,为铁催化剂活化C—X键和C—C耦联反应提供了线索和以铁为基的催化剂设计提供理论依据.  相似文献   
10.
MH~+(M=Fe,Co,Ni)催化二氧化碳的氢化反应   总被引:1,自引:0,他引:1  
在密度泛函理论的B3LYP水平下计算了MH~+(M=Fe,Co,Ni)催化二氧化碳的氢化反应.研究表明,氢转移至C上要比转移至O上容易得多.探讨不同泛函方法对反应的影响,从CCSD(T)的计算结果可见,与Co H~+和Ni H~+相比,Fe H~+对H转移至C上的活性较高.电子结构分析表明,反应过程中氢转移为氢负离子转移.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号