首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6818篇
  免费   1306篇
  国内免费   528篇
化学   3976篇
晶体学   289篇
力学   178篇
综合类   40篇
数学   65篇
物理学   4104篇
  2023年   33篇
  2022年   54篇
  2021年   105篇
  2020年   159篇
  2019年   145篇
  2018年   147篇
  2017年   204篇
  2016年   322篇
  2015年   279篇
  2014年   331篇
  2013年   577篇
  2012年   385篇
  2011年   598篇
  2010年   498篇
  2009年   551篇
  2008年   519篇
  2007年   549篇
  2006年   586篇
  2005年   424篇
  2004年   322篇
  2003年   319篇
  2002年   321篇
  2001年   193篇
  2000年   166篇
  1999年   131篇
  1998年   122篇
  1997年   106篇
  1996年   63篇
  1995年   85篇
  1994年   94篇
  1993年   47篇
  1992年   59篇
  1991年   27篇
  1990年   22篇
  1989年   15篇
  1988年   27篇
  1987年   14篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
排序方式: 共有8652条查询结果,搜索用时 31 毫秒
1.
Xiao-Qin Liu 《中国物理 B》2022,31(11):114205-114205
Yb3+:CaF2-YF3 transparent ceramics with excellent optical quality was successfully fabricated by hot-pressed method. Pulsed laser properties of this ceramics were investigated for the first time. Laser diode (LD) was applied as the pump source to generate a dual-wavelength mode-locked (ML) laser. The maximum average output power was 310 mW, which represents the highest output power of ultrafast calcium fluoride ceramic laser. The spectrum separated at 1048.9 nm and 1049.7 nm with a total pulse duration of 8.9 ps. The interval period between the beating signals was about 4.3 ps, corresponding to a 0.23 THz beat pulse repetition rate. These results demonstrate its potential in producing dual-wavelength ultrashort pulses. These Yb3+:CaF2-YF3 ceramics with low-cost and short-preparation period are ideal candidate materials for ultrafast lasers.  相似文献   
2.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
3.
4.
Conductive hydrogels with ionic compounds possess great potential for the development of soft smart devices. A dielectric scarfskin is typically required for these devices to prevent short circuiting, leading to devices with lower stretchability than the hydrogel. Henceforth, commonly used dielectric materials, such as PDMS and Ecoflex, cannot be largely stretched. Hydrogel devices with ultrastretchability are required to accommodate hostile application environments. Herein, we propose a hydrogel fiber coated with a dielectric layer that can be stretched to over 2000% of its initial length. The fiber remains conductive when stretched to ~1300%. In addition, the core/sheath hydrogel fiber can be endowed with a variety of functional properties, such as electroluminescence (EL), photoluminescence (PL), and magnetic‐responsiveness, demonstrating scalability of the resultant fiber. The present work can pave the way for numerous next‐generation soft devices, such as smart textiles and wearable electronics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 272–280  相似文献   
5.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   
6.
《Current Applied Physics》2020,20(9):1073-1079
We study emissivity (ε)-dependent radiative heat transfer phenomena in remote and contact configurations. To demonstrate the emissivity-dependent radiative heating mode in a remote configuration, we fabricated miniature greenhouses covered with low (0.34)- and high-ε (0.86) polyethylene films and monitored temperatures on the floors, insides, and covers of the greenhouses during 24 h. The high-ε greenhouse yielded a 9-°C increase in floor temperature relative to the low-ε greenhouse at a one-sun solar irradiance because the high-ε film effectively trapped floor radiation. In contrast, the cover temperature remained lower in the high-ε greenhouse due to intensified radiation released from the high-ε film. This self-cooling effect was more evident when an emissive film was in physical contact with an object. While bare copper heated up to 55 °C, a high-ε film coated copper substrate was kept cooler by 4 and 2 °C compared with the bare and low-ε film coated copper samples, respectively.  相似文献   
7.
Novel poly(spiroorthocarbonate)s [poly(SOC)]s having a Cardo or bent structure were synthesized by polycondensation of several bis‐catechols having fluorene (BCFL), spirobisindane (BCSPI), or spirobischromane (BCSPC) in the structure with 2,2,6,6‐tetrachlorobenzo[1,2‐d:4,5‐d’]bis[1,3]dioxole (4ClBD). Synthesis of poly(SOC)s was confirmed by NMR and IR spectrometry. The poly(SOC)s obtained from BCFL or BCSPC were soluble in common organic solvents. The glass transition temperature of the poly(SOC)s was not detected by differential scanning calorimetry (DSC) in the range of 50–300 °C. The 10 wt % decomposition temperature of the poly(SOC)s was found to be above 400 °C. These results indicated the high thermal stability of the poly(SOC)s. Soluble poly(SOC)s could be possessed to form a film on a glass plate by the spin coat method. The obtained polymer films were 0.2 μm in thickness with 95% light transmission in the optical wavelength range. These results suggested that the Cardo or bent structure may block the packing of the main‐chain of the structure, which improves the solubility of the polymers, increases transparency, and enhances the thermal stability of SOCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1409‐1416  相似文献   
8.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
9.
采用DIS数字信息化系统,对不同浓度的蓝墨水溶液在激光光源照射下的透射平均照度及照度分布图像进行实验研究,得到了平均照度值随溶液浓度变化的规律。对不同颜色塑料膜片对白炽灯光源透过照度值及照度分布图像进行实验研究得到及其相关之规律。  相似文献   
10.
I n this study, we successfully synthesized water/methanol soluble random copolymers with a high dielectric constant, poly(n‐(hydroxymethyl) acrylamide‐co‐5‐(9‐(5‐(diethylamino)pentyl)?2‐(4‐vinylphenyl)?9H‐fluorene(P(NMA‐co‐F6NSt)), which contained chemical crosslinkable segment (NMA) and hole trapping building block (F6NSt). The feeding molar ratios of two monomers (NMA:F6NSt) were set as 100:0, 95:5, 80:20, and 67:33 for the copolymers of P1 , P2 , P3, and P4 , respectively. The crosslinked P(NMA‐co‐F6NSt) thin film could serve as both dielectric and charge storage layers in organic field‐effect transistor (OFET) memory device and exhibited high k (i.e., 4.91–6.47) characteristics, leading to a low voltage operation and a small power consumption. Devices based on the P1 ‐ P4 dielectrics showed excellent insulating properties and good charge storage performance under a low operating voltage in a range of ±5V because of tightly network structures and well‐dispersed trapping cites. In particular, P3 ‐based memory device exhibited a large memory window of 4.13 V with stable data retention stability over 104 s, a large on/off ratio of 104, and good endurance characteristics as high as 200 cycles. The above results suggested that a high‐performance OFET memory device could be facilely achieved using the novel crosslinkable high‐k copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3224–3236  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号