首页 | 官方网站   微博 | 高级检索  
     


Crosslinkable high dielectric constant polymer dielectrics for low voltage organic field‐effect transistor memory devices
Authors:Chih‐Chien Hung  Hung‐Chin Wu  Yu‐Cheng Chiu  Shih‐Huang Tung  Wen‐Chang Chen
Affiliation:1. Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan;2. Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
Abstract:I n this study, we successfully synthesized water/methanol soluble random copolymers with a high dielectric constant, poly(n‐(hydroxymethyl) acrylamide‐co‐5‐(9‐(5‐(diethylamino)pentyl)?2‐(4‐vinylphenyl)?9H‐fluorene(P(NMA‐co‐F6NSt)), which contained chemical crosslinkable segment (NMA) and hole trapping building block (F6NSt). The feeding molar ratios of two monomers (NMA:F6NSt) were set as 100:0, 95:5, 80:20, and 67:33 for the copolymers of P1 , P2 , P3, and P4 , respectively. The crosslinked P(NMA‐co‐F6NSt) thin film could serve as both dielectric and charge storage layers in organic field‐effect transistor (OFET) memory device and exhibited high k (i.e., 4.91–6.47) characteristics, leading to a low voltage operation and a small power consumption. Devices based on the P1 ‐ P4 dielectrics showed excellent insulating properties and good charge storage performance under a low operating voltage in a range of ±5V because of tightly network structures and well‐dispersed trapping cites. In particular, P3 ‐based memory device exhibited a large memory window of 4.13 V with stable data retention stability over 104 s, a large on/off ratio of 104, and good endurance characteristics as high as 200 cycles. The above results suggested that a high‐performance OFET memory device could be facilely achieved using the novel crosslinkable high‐k copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3224–3236
Keywords:charge transport  crosslinking  dielectric properties  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号