首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12592篇
  免费   1953篇
  国内免费   2176篇
化学   14052篇
晶体学   388篇
力学   84篇
综合类   60篇
数学   146篇
物理学   1991篇
  2024年   17篇
  2023年   194篇
  2022年   281篇
  2021年   524篇
  2020年   742篇
  2019年   595篇
  2018年   520篇
  2017年   509篇
  2016年   725篇
  2015年   735篇
  2014年   807篇
  2013年   1299篇
  2012年   855篇
  2011年   747篇
  2010年   631篇
  2009年   750篇
  2008年   840篇
  2007年   865篇
  2006年   775篇
  2005年   726篇
  2004年   657篇
  2003年   534篇
  2002年   345篇
  2001年   257篇
  2000年   229篇
  1999年   203篇
  1998年   169篇
  1997年   162篇
  1996年   181篇
  1995年   176篇
  1994年   133篇
  1993年   99篇
  1992年   88篇
  1991年   60篇
  1990年   41篇
  1989年   32篇
  1988年   33篇
  1987年   33篇
  1986年   31篇
  1985年   34篇
  1984年   11篇
  1983年   8篇
  1982年   10篇
  1981年   7篇
  1980年   10篇
  1978年   4篇
  1977年   10篇
  1976年   7篇
  1974年   5篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ioan Baldea 《中国物理 B》2022,31(12):123101-123101
Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.  相似文献   
2.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
3.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   
4.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
5.
《Mendeleev Communications》2022,32(1):126-128
3-Aryl-5-methylidene-2-thiohydantoins were constructed in one-pot reaction of aryl isothiocyanates and 3-morpholino- alanine in alkaline medium with the subsequent treatment with boiling hydrochloric acid.  相似文献   
6.
The N–N bond is present in many important organic compounds, such as hydrazines, pyrazoles, azos, etc. Many methods based on transition metal catalyzed N–N coupling or functionalization of hydrazine have been reported for the synthesis of N–N containing organic compounds. In recent years, electrochemical dehydrogenative N–H/N–H coupling has become a powerful tool for the construction of N–N bearing organic compounds. The electrochemical methods employ electrons as traceless redox reagents instead of chemicals and produce hydrogen as the only byproduct. In this review, we summarize the recent advances in the electrochemical dehydrogenative N–H/N–H coupling reactions with focus on the mechanistic insights and synthetic applications of these transformations.  相似文献   
7.
8.
The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol−1 and its conversion is also thermodynamically unfavorable.  相似文献   
9.
ABSTRACT

The complexes of H2X (X?=?O, S, Se) with hypervalent halogens YF3 and YF5 (Y?=?Cl, Br, I) have been studied. The σ-hole on the Y atom participates in a halogen bond with the lone pair on the chalcogen atom. In addition, some secondary interactions coexist with the halogen bond in most complexes. The interaction energy correlates with the nature of both X and Y atoms. In most cases, the complex is more stable for the heavier Y atom and the lighter X atom. Of course, there are some exceptions in H2X···YF3. YF3 forms a more stable complex with H2X than does YF5. These complexes are dominated by electrostatic interaction and the halogen bond involving H2S and H2Se exhibits some covalent character.

Halogen bond plays an important role in chemical reactions and multivalent halogens can regulate chemical reactions by participating in a halogen bond. Thus we compare the effect of the chalcogen electron donor on the strength and nature of halogen bonding involving multivalent halogens.  相似文献   
10.
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom-scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one-pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer-based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single-file water chains in the 2.8 Å tubular cavity, rich in hydrogen-bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2O⋅S−1⋅channel−1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号