首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1457篇
  免费   214篇
  国内免费   136篇
化学   953篇
晶体学   15篇
力学   91篇
综合类   28篇
数学   244篇
物理学   476篇
  2024年   1篇
  2023年   26篇
  2022年   61篇
  2021年   60篇
  2020年   101篇
  2019年   83篇
  2018年   60篇
  2017年   61篇
  2016年   65篇
  2015年   53篇
  2014年   64篇
  2013年   149篇
  2012年   90篇
  2011年   77篇
  2010年   73篇
  2009年   79篇
  2008年   87篇
  2007年   96篇
  2006年   89篇
  2005年   69篇
  2004年   58篇
  2003年   53篇
  2002年   44篇
  2001年   34篇
  2000年   30篇
  1999年   28篇
  1998年   19篇
  1997年   13篇
  1996年   10篇
  1995年   15篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1977年   3篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1807条查询结果,搜索用时 31 毫秒
1.
对人教版高中化学教科书新设计的“研究与实践”栏目的主题内容、功能价值进行分析,就如何充分发挥该栏目的教学功能和价值,发展学生的化学学科核心素养,提出了创设教学情境线索、开发为研究性学习课题、开发为校本选修课程、开发为STEM课程等实施策略。  相似文献   
2.
数学底层思维即用数学的眼光观察世界、用数学的思维分析世界以及用数学的语言表达世界,是人们面对自然和社会中纷繁多样的现象和问题时,所展现的自发的、不依赖监督的、融汇数学学科核心素养的思维方式.作为国家高中新课程标准中数学六大核心素养之一的数学建模,是培养学生数学底层思维的良好载体,对人才培养和社会发展均起到良好的促进作用.本文主要阐述了数学建模对高中生构建数学底层思维的作用,并结合教学实例给出教学实施建议.  相似文献   
3.
《Discrete Mathematics》2022,345(9):112949
In this paper, we describe a result on self-conjugate (s,s+1)-core partitions with the fixed number of corners. We also define shifted corners of a distinct partition and find formulas for the number of (s,s+1)-core partitions and the number of (s,s+1)-core shifted Young diagrams with the fixed number of shifted corners.  相似文献   
4.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
5.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
6.
The Ni? Mo/Mg(OH)2 (NMM) hybrid as an efficient flame retardancy and smoke suppression composite for polypropylene (PP) was synthesized through Ni? Mo co‐precipitation on the surface of Mg(OH)2 (MH) hexagonal nanosheets. Compared to PP/MH, PP/NMM exhibited excellent smoke suppressing and flame retardancy on the heat release rate, total heat release, smoke production rate, total smoke production, CO production rate and total CO production with the same loading. The reduced hazard of PP/NMM was mainly attributed to the high physical barrier effect of compact char residues on heat, smoke and combustible gas. The mechanism study indicated that multiwalled carbon nanotubes (MWCNTs) generated from the catalytic carbonization of PP by the Ni? Mo compound could play the role of “rebar” to strengthen the char residues, avoid the generation of cracks and form highly compact char layer. Furthermore, MgO could facilitate the production of MWCNTs through changing the pyrolysis process of PP and increasing the reaction time between pyrolysis gas and Ni? Mo compound. Hence, the new Ni? Mo/MH catalyst hybrid may explore the potential for solving the tough problem of the flammability and heavy smoke of the polyolefins system.  相似文献   
7.
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.  相似文献   
8.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   
9.
More than 70% of the world's nickel reserves are found in laterite ores. In this research, a laterite ore sample, containing Ni, Co, and Fe, was employed to study the recovery of nickel and cobalt. Thus, the effect of calcination, acid concentration, percent solids, and stirring rate on nickel and cobalt recoveries from an iron-rich laterite sample was investigated. Optimization with response surface methodology and kinetic studies were performed. The calcination of the sample prior to leaching at 500°C for 2 h provided condition for better nickel and cobalt dissolutions. At optimal conditions, the concentration of sulfuric acid, solid-to-liquid ratio, stirring speed, temperature, and time test were equal to 5 M, 0.1, 370 rpm, 90°C, and 2 h, respectively. The highest recoveries of nickel and cobalt were 65.9% and 63.1%, respectively. Solids content had a negative effect on Ni and Co recovery, whereas acid concentration was positively affected. Addition of 10% (w/v) NaCl in the presence of 5 M acid concentration, 60°C, 370 rpm, and leaching time of 2 h increased the nickel and cobalt recoveries, 15.3% and 21.4%, respectively. The high dependence of process on temperature indicates chemical control; the activation energies E= 59.54 and E= 45.74 kJ/mol, respectively, for nickel and cobalt, were also consistent with this conclusion.  相似文献   
10.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号