首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite(denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries(LIBs).The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g~(-1) at a current density of 100 mA g~(-1) and superior cycling performance of 1113 mAh g~(-1) over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductivity and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer.The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.  相似文献   

2.
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.  相似文献   

3.
Silicon-based materials that have higher theoretical specific capacity than other conventional anodes, such as carbon materials, Li2TiO3 materials and Sn-based materials, become a hot topic in research of lithium-ion battery (LIB). However, the low conductivity and large volume expansion of silicon-based materials hinders the commercialization of silicon-based materials. Until recent years, these issues are alleviated by the combination of carbon-based materials. In this review, the preparation of Si/C materials by different synthetic methods in the past decade is reviewed along with their respective advantages and disadvantages. In addition, Si/C materials formed by silicon and different carbon-based materials is summarized, where the influences of carbons on the electrochemical performance of silicon are emphasized. Lastly, future research direction in the material design and optimization of Si/C materials is proposed to fill the current gap in the development of efficient Si/C anode for LIBs.  相似文献   

4.
In the present work,an interconnected sandwich carbon/Si-SiO_2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.  相似文献   

5.
The research of anodic materials which could improve the performance and reduce the cost of graphite-based materials in lithium-ion batteries leads to a considerable effort for creating novel carbons. In this work, special attention has been paid to investigating the possibility of improving the electrochemical behavior of graphite anode by application of composite materials with carbon materials coming from agro-wastes. For that, different carbons coming from agro-wastes have been synthesized and characterized in order to study the effect of their properties on the electrochemical performance of C/C composites with graphite. It has been established that introduction of hard carbon obtained from olive stones into the active mass of anode based on graphite allows one to increase the reversible capacity up to 405 mAh g?1 for the total mass of graphite/carbon content of electrode, and also to improve stability of characteristics during cycling. We suggested that such a binary carbon mixture (graphite and hard carbon) would be a better choice for development of the anode for lithium-ion battery.  相似文献   

6.
Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium‐ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony‐doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as‐synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO‐decorated natural graphite (c/ATO‐NG) is produced. In the (carbon/ATO) dual‐layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO‐NG anode materials display significant improvements in capacity (530 mA h g?1), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full‐cell consisting of a c/ATO‐NG anode and an LiNi0.5Mn1.5O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual‐layer coating concept proposed herein opens a new route toward high‐performance anode materials for lithium‐ion batteries.  相似文献   

7.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。  相似文献   

8.
梁振浪  杨耀  李豪  刘丽英  施志聪 《电化学》2021,27(2):177-184
以聚丙烯腈、石油沥青和花生壳为前驱体,在1200℃下碳化制备三种不同的硬碳材料。通过扫描电子显微、X射线衍射、氮气吸附/脱附测试和拉曼光谱等方法探究不同前驱体所制备的硬碳材料的表面形貌和物相结构。通过恒流充放电测试考察了这三种硬碳负极材料的电化学性能。结果表明,花生壳基硬碳的初始放电比容量最高,但首圈库仑效率最低,石油沥青基硬碳的首圈库仑效率最高但是比容量最低,聚丙烯腈基硬碳具有较高的循环比容量和稳定性。  相似文献   

9.
Utilizing cost-effective raw materials to prepare high-performance silicon-based anode materials for lithium-ion batteries (LIBs) is both challenging and attractive. Herein, a porous SiFe@C (pSiFe@C) composite derived from low-cost ferrosilicon is prepared via a scalable three-step procedure, including ball milling, partial etching, and carbon layer coating. The pSiFe@C material integrates the advantages of the mesoporous structure, the partially retained FeSi2 conductive phase, and a uniform carbon layer (12–16 nm), which can substantially alleviate the huge volume expansion effect in the repeated lithium-ion insertion/extraction processes, effectively stabilizing the solid–electrolyte interphase (SEI) film and markedly enhancing the overall electronic conductivity of the material. Benefiting from the rational structure, the obtained pSiFe@C hybrid material delivers a reversible capacity of 1162.1 mAh g−1 after 200 cycles at 500 mA g−1, with a higher initial coulombic efficiency of 82.30 %. In addition, it shows large discharge capacities of 803.1 and 600.0 mAh g−1 after 500 cycles at 2 and 4 A g−1, respectively, manifesting an excellent electrochemical lithium storage. This work provides a good prospect for the commercial production of silicon-based anode materials for LIBs with a high lithium-storage capacity.  相似文献   

10.
Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare nitrogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assistance of any activation or template technique. The as‐obtained NDPC shows favorable features for electrochemical energy storage, which can not only provide multiple sites for the storage and insertion of Li ions, but also facilitate rapid mass transport of electrons and Li ions. As a result, the NDPC when evaluated as an anode material for lithium ion batteries delivers high reversible capacity (505 mAh·g?1 at 0.1 C), excellent rate capability (190 mAh·g?1 at 10 C). These favorable properties suggest that the NDPC can be a promising anode material for lithium ion batteries (LIBs).  相似文献   

11.
A novel hollow carbon derived from biomass lotus-root has been prepared by a one-step carbonization method. The carbon anode obtained at 900 ℃ showed the best electrochemical performance, corresponding to a high specific capacity of 445 mA∙h/g at 0.1 C, as well as excellent cycling stability after 500 cycles. Further investigation exhibits that the lithium storage of hollow carbon involves Li+ adsorption in the defect sites and Li+ insertion. The results showed that the intrinsic structure of lotus root can inspire us to prepare biomass carbon with a hollow structure as an excellent anode for lithium-ion batteries.  相似文献   

12.
Nitrogen‐doped carbon materials (NDCs) play an important role in various fields. A great deal of effort has been devoted to obtaining carbon materials with a high nitrogen content; however, much is still unknown about the structure of the nitrogen‐doped materials and the maximum nitrogen content possible for such compounds. Here, we demonstrate an interesting relationship between the N/C molar ratio and the N content of NDCs. The upper limit for the nitrogen content of NDCs that might be achieved was estimated and found to strongly depend on the carbonization temperature (14.32 wt % at 1000 °C and 21.66 wt % at 900 °C), irrespective of the precursor or preparation conditions. Simulations suggest that, especially in the carbon architectures obtained at high temperatures, nitrogen atoms are always located on separate hexagon moieties in a graphitic configuration, thereby yielding a critical N/C molar ratio very close to the value estimated from the experimental results.  相似文献   

13.
以商业化的活性碳作为碳基体, 三聚氰胺作为氮源, 采用沉积法合成了N掺杂的碳磷复合材料. 材料的物性表征和电化学测试结果表明, 磷纳米球形颗粒均匀分散在氮掺杂的活性碳上, 有效增加了与电解液的接触面积, 同时P—C键的存在能稳定材料的结构, 当三聚氰胺的添加量为10%(质量分数)时, 氮掺杂的碳磷复合材料在室温及0.1C倍率首次充电比容量为2282.2 mA·h·g -1, 循环100次后充电比容量保持率为92.5%, 在5C倍率下首次充电比容量达到624.6 mA·h·g -1. 该复合材料在-10 ℃, 0.1C倍率下充电比容量为1128.2 mA·h·g -1, 在55 ℃, 0.1C倍率下首次充电比容量达到2060.5 mA·h·g -1, 表现出较好的电化学性能.  相似文献   

14.
Sodium‐ion batteries (SIBs) have attracted much attention for application in large‐scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large‐scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high‐performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high‐performance anode materials for SIBs.  相似文献   

15.
Yang CC  Li S 《Chemphyschem》2011,12(18):3614-3618
Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications.  相似文献   

16.
A three-dimensional cellular silicon-based anode was prepared by casting milled silicon powders into the “valley-ridge” copper architecture, then its electrochemical property and failure mechanism were studied by means of charging–discharging (C–D) test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In comparison with common 2D anode fabricated by “slurry-coating” technology on flat copper foil, the 3D copper framework has shown a great structure advantage in restricting severe volume changes of silicon particles. This “stress-alleviated” action can effectively impede strain-induced loosening happened inside electrodes during charging and discharging, and consequently improve cycle-life and coulombic efficiency of silicon-based anode.  相似文献   

17.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

18.
硅作为一种重要的半导体材料,在微电子领域发挥着极其重要的作用。有机分子修饰硅表面是近年来硅表面化学领域的一个研究热点,引起了研究者的广泛重视。以共价键嫁接在硅表面的有机单分子层能形成稳定、高质量的杂化连接,将赋予传统的硅材料更多新的功能,具有许多其它表面难以比拟的优点。本文针对有机分子修饰硅表面的方法、单层膜的表征和应用,对近年来的最新研究进展进行了综述,并对该方向的今后的发展进行了展望。  相似文献   

19.
Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state‐of‐art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy‐intensive. Three‐dimensional (3D) porous silicon‐based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li‐ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g?1 is achieved.  相似文献   

20.
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g) and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of "dead lithium" are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS) as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9% over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_4(LFP) as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4% after 100 cycles at 0.5 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号