首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82439篇
  免费   6764篇
  国内免费   5277篇
化学   26923篇
晶体学   1815篇
力学   3609篇
综合类   358篇
数学   18427篇
物理学   43348篇
  2022年   178篇
  2021年   368篇
  2020年   712篇
  2019年   989篇
  2018年   976篇
  2017年   706篇
  2016年   598篇
  2015年   537篇
  2014年   1222篇
  2013年   1880篇
  2012年   1295篇
  2011年   1878篇
  2010年   2509篇
  2009年   7012篇
  2008年   8061篇
  2007年   6545篇
  2006年   5965篇
  2005年   4117篇
  2004年   3918篇
  2003年   4088篇
  2002年   5308篇
  2001年   3820篇
  2000年   3580篇
  1999年   3393篇
  1998年   2754篇
  1997年   1937篇
  1996年   1738篇
  1995年   2231篇
  1994年   2161篇
  1993年   1628篇
  1992年   1126篇
  1991年   837篇
  1990年   684篇
  1989年   613篇
  1988年   568篇
  1987年   410篇
  1986年   194篇
  1985年   954篇
  1984年   627篇
  1983年   492篇
  1982年   642篇
  1981年   797篇
  1980年   721篇
  1979年   562篇
  1978年   585篇
  1977年   539篇
  1976年   542篇
  1975年   317篇
  1974年   357篇
  1973年   467篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
2.
3.
We consider concentrated vorticities for the Euler equation on a smooth domain Ω?R2 in the form of
ω=j=1NωjχΩj,|Ωj|=πrj2,Ωjωjdμ=μj0,
supported on well-separated vortical domains Ωj, j=1,,N, of small diameters O(rj). A conformal mapping framework is set up to study this free boundary problem with Ωj being part of unknowns. For any given vorticities μ1,,μN and small r1,,rNR+, through a perturbation approach, we obtain such piecewise constant steady vortex patches as well as piecewise smooth Lipschitz steady vorticities, both concentrated near non-degenerate critical configurations of the Kirchhoff–Routh Hamiltonian function. When vortex patch evolution is considered as the boundary dynamics of ?Ωj, through an invariant subspace decomposition, it is also proved that the spectral/linear stability of such steady vortex patches is largely determined by that of the 2N-dimensional linearized point vortex dynamics, while the motion is highly oscillatory in the 2N-codim directions corresponding to the vortical domain shapes.  相似文献   
4.
A (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.  相似文献   
5.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   
6.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
7.
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46–58 nm and periodicities of 70–102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.  相似文献   
8.
For the orthosymplectic Lie superalgebra ◂⋅▸OSP(2,2), we choose a set of basis matrices. A linear combination of those basis matrices presents a spatial spectral matrix. The compatible condition of the spatial part and the corresponding temporal parts of the spectral problem leads to a generalized super AKNS (GSAKNS) hierarchy. By making use of the supertrace identity, the obtained GSAKNS hierarchy can be written as the super bi-Hamiltonian structures.  相似文献   
9.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
10.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号