排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear differential dynamic system from the given discrete data of the solution. We propose a model and a corresponding algorithm to recover the coefficient matrix of the differential system based on the normal vectors from the given discrete points, in order to avoid the problem of parameterization in curve fitting and approximation. We also give some theoretical analysis on our algorithm. When the data points are taken from the solution curve and the set composed of these data points is not degenerate, the coefficient matrix $A$ reconstructed by our algorithm is unique from the given discrete and noisefree data. We discuss the error bounds for the approximate coefficient matrix and the solution which are reconstructed by our algorithm. Numerical examples demonstrate the effectiveness of the algorithm. 相似文献
2.
3.
The goal of this paper is to achieve a computational model and corresponding efficient algorithm for obtaining a sparse representation of the fitting surface to the given scattered data. The basic idea of the model is to utilize the principal shift invariant(PSI) space and the l_1 norm minimization. In order to obtain different sparsity of the approximation solution, the problem is represented as a multilevel LASSO(MLASSO)model with different regularization parameters. The MLASSO model can be solved efficiently by the alternating direction method of multipliers. Numerical experiments indicate that compared to the AGLASSO model and the basic MBA algorithm, the MLASSO model can provide an acceptable compromise between the minimization of the data mismatch term and the sparsity of the solution. Moreover, the solution by the MLASSO model can reflect the regions of the underlying surface where high gradients occur. 相似文献
4.
In this paper, we present an effective meshless method for solving the inverse heat conduction problems, with the Neumann boundary condition. A PDE-constrained optimization method is developed to get a global approximation scheme in both spatial and temporal domains, by using the fundamental solution of the governing equation as the basis function.Since the initial measured data contain some noises, and the resulting systems of equations are usually ill-conditioned, the Tikhonov regularization technique with the generalized crossvalidation criterion is applied to obtain more stable numerical solutions. It is shown that the proposed schemes are effective by some numerical tests. 相似文献
1