首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   76篇
  国内免费   109篇
化学   1047篇
晶体学   34篇
力学   11篇
综合类   7篇
数学   2篇
物理学   255篇
  2024年   1篇
  2023年   10篇
  2022年   14篇
  2021年   29篇
  2020年   41篇
  2019年   36篇
  2018年   34篇
  2017年   40篇
  2016年   36篇
  2015年   43篇
  2014年   65篇
  2013年   85篇
  2012年   51篇
  2011年   112篇
  2010年   53篇
  2009年   65篇
  2008年   62篇
  2007年   87篇
  2006年   66篇
  2005年   61篇
  2004年   51篇
  2003年   48篇
  2002年   32篇
  2001年   30篇
  2000年   22篇
  1999年   34篇
  1998年   21篇
  1997年   20篇
  1996年   15篇
  1995年   22篇
  1994年   19篇
  1993年   9篇
  1992年   17篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1966年   1篇
排序方式: 共有1356条查询结果,搜索用时 15 毫秒
1.
亚甲基蓝和环丙沙星是水体中2种污染物, 对生态环境有潜在危害. 本文以市政剩余活性污泥为原料, 氯化锌为活化剂热解制备污泥基吸附剂, 研究盐酸酸洗浓度、氯化锌浓度、热解温度、热解时间等对污泥基吸附剂吸附水中亚甲基蓝和环丙沙星性能的影响. 结果表明 (1)污泥基吸附剂对亚甲基蓝的吸附性能随盐酸酸洗浓度的增大而增加, 对环丙沙星的吸附性能则随盐酸酸洗浓度的增大呈先降后增趋势, 两者均在1.500mol·L-1盐酸浓度下取得最优值. (2)污泥基吸附剂对亚甲基蓝和环丙沙星的吸附性能随氯化锌浓度和热解温度的增加呈先升后降趋势, 在氯化锌浓度为4.0mol·L-1、热解温度为500℃时有最优值; 随着热解时间的延长, 污泥基吸附剂对亚甲基蓝和环丙沙星的吸附性能分别在500℃热解70min和80min时有最优值. (3)污泥基吸附剂的最佳制备条件为 氯化锌4.0mol·L-1活化2h、500℃热解70min和80min、1.500mol·L-1盐酸酸洗; 以此制得的污泥基吸附剂对亚甲基蓝和环丙沙星的去除率分别为97.7%和96.4%, 平衡吸附量分别为97.9mg·g-1和3.9mg·g-1, 且污泥基吸附剂对亚甲基蓝和环丙沙星的吸附过程均符合准二级动力学方程.  相似文献   
2.
The new nanocomposites, Pd/C/ZrO2, PdO/ZrO2, and Pd/PdO/ZrO2, were prepared by thermal conversion of Pd@UiO-66-Zr−NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr−NH2. The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h−1, while by using Pd@UiO-66-Zr−NH2, much lower TOF values, 51–95 h−1, were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.  相似文献   
3.
《Mendeleev Communications》2022,32(5):700-702
Kinetic modeling of pyrolysis of acetylene diluted with argon showed a strong influence of small additives of oxygen on the routes of formation of soot nuclei. The influence of oxygen on various channels of formation and consumption of propargyl radicals C3H3, which are important precursors of soot formation, as well as the fundamental possibility of controlling the process of soot formation and its properties are considered.  相似文献   
4.
Using Reaction Mechanism Generator (RMG), we have automatically constructed a detailed mechanism for acetylene pyrolysis, which predicts formation of polycyclic aromatic hydrocarbons (PAHs) up to pyrene. To improve the data available for formation pathways from naphthalene to pyrene, new high‐pressure limit reaction rate coefficients and species thermochemistry were calculated using a combination of electronic structure data from the literature and new quantum calculations. Pressure‐dependent kinetics for the CH potential energy surface calculated by Zádor et al. were incorporated to ensure accurate pathways for acetylene initiation reactions. After adding these new data into the RMG database, a pressure‐dependent mechanism was generated in a single RMG simulation which captures chemistry from C to C. In general, the RMG‐generated model accurately predicts major species profiles in comparison to plug‐flow reactor data from the literature. The primary shortcoming of the model is that formation of anthracene, phenanthrene, and pyrene are underpredicted, and PAHs beyond pyrene are not captured. Reaction path analysis was performed for the RMG model to identify key pathways. Notable conclusions include the importance of accounting for the acetone impurity in acetylene in accurately predicting formation of odd‐carbon species, the remarkably low contribution of acetylene dimerization to vinylacetylene or diacetylene, and the dominance of the hydrogen abstraction CH addition (HACA) mechanism in the formation pathways to all PAH species in the model. This work demonstrates the improved ability of RMG to model PAH formation, while highlighting the need for more kinetics data for elementary reaction pathways to larger PAHs.  相似文献   
5.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests.  相似文献   
6.
The evaluation and interpretation of the behavior of construction materials under fire conditions have been complicated. Over the last few years, artificial intelligence (AI) has emerged as a reliable method to tackle this engineering problem. This review summarizes existing studies that applied AI to predict the fire performance of different construction materials (e.g., concrete, steel, timber, and composites). The prediction of the flame retardancy of some structural components such as beams, columns, slabs, and connections by utilizing AI-based models is also discussed. The end of this review offers insights on the advantages, existing challenges, and recommendations for the development of AI techniques used to evaluate the fire performance of construction materials and their flame retardancy. This review offers a comprehensive overview to researchers in the fields of fire engineering and material science, and it encourages them to explore and consider the use of AI in future research projects.  相似文献   
7.
本文的主要实验目的是利用DMA-80测汞仪直接测定固体样品中的汞并证明其方法可靠。采用升温加热直接进行热分解、金汞齐反应,采用长、短双检测池,可直接测定固体、液体样品,汞含量在0.n×10-9~600.0×10-9范围内的样品都能被很准确地测定,每个样品测定时间约为5min。 测试结果证明其方法具可靠性。  相似文献   
8.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   
9.
《印度化学会志》2023,100(3):100919
For years, the human race has awaited a more convenient, greener, and largely efficient material for energy conversion and electronic applications. Cu2O thin films produced by spray pyrolysis meet the economic viability and cost requirements, and it is widely assumed that they will lead to the production of functionally viable technologies. The spray pyrolysis method was used to added titanium into copper (I) oxide thin films with a deposition temperature of 200 °C and annealing for 2 h at 200 °C in this study. The Ti-doped Cu2O's optical, surface morphology, and photovoltaic characteristics have all been thoroughly explored. The best characteristics were obtained at 3% Ti doped Cu2O. The near-band emission of Ti-doped Cu2O was moved from 385 nm to 400 nm. The bandgap was reduced from 2.35 to 1.98Ev at 3% Ti doped Cu2O. As a result, Cu2O (Ti)-based solar cells' short circuit current density and open circuit voltage were greatly improved. It has been demonstrated that adding Ti to p-CuO/n-Si solar cells enhances their photovoltaic performance.  相似文献   
10.
An aqueous colloidal dispersion of Pt nanoparticles (NPs) stabilized by fullerenol C60(OH)12 (Pt:C60(OH)12) was successfully synthesized via liquid-phase chemical reduction. The subsequent pyrolysis of Pt:C60(OH)12 at different temperatures was conducted to afford Pt-doped carbon with different chemical compositions (Pt:C60n). X-ray absorption spectroscopy (XAS) and Infrared (IR) absorption spectroscopy and thermogravimetric measurements revealed that the thus-prepared nanocomposite consists of Pt NPs and high valent Pt-C60(OH)12 complex. One distinct feature of C60(OH)12 matrix as catalyst support is the suppression of size growth of Pt NPs during the pyrolysis up to 300 °C. Electrochemical experiments using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed to find that Pt:C60300 (pyrolyzed at 300 °C) exhibited higher activity than others, that was attributed to the π-extended feature of the as-obtained carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号