首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   40篇
  国内免费   744篇
化学   1226篇
晶体学   2篇
综合类   18篇
数学   2篇
物理学   43篇
  2024年   5篇
  2023年   41篇
  2022年   38篇
  2021年   48篇
  2020年   40篇
  2019年   29篇
  2018年   20篇
  2017年   27篇
  2016年   38篇
  2015年   53篇
  2014年   82篇
  2013年   65篇
  2012年   48篇
  2011年   61篇
  2010年   55篇
  2009年   49篇
  2008年   49篇
  2007年   38篇
  2006年   43篇
  2005年   32篇
  2004年   22篇
  2003年   34篇
  2002年   24篇
  2001年   27篇
  2000年   37篇
  1999年   32篇
  1998年   33篇
  1997年   34篇
  1996年   23篇
  1995年   39篇
  1994年   41篇
  1993年   25篇
  1992年   23篇
  1991年   7篇
  1990年   11篇
  1989年   11篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1291条查询结果,搜索用时 15 毫秒
1.
发展了一种镍催化环丁酮肟酯和芳基锌试剂之间Negishi偶联的方法.镍既作为亚胺自由基的引发剂,也作为芳基锌试剂与烷基自由基偶联反应的催化剂在反应中起作用.本方法可避免使用剧毒的氰化物,且具有很广的底物适应性和官能团兼容性,因此可能是一种具有潜在吸引力的高效合成烷基腈类化合物的新策略.初步的机理研究显示,该反应极可能经历自由基历程.  相似文献   
2.
工业发展与人类活动导致大气中CO2浓度逐年升高, 引发一系列生态环境问题. 将CO2光催化转化为高附加值化学物质不仅有利于缓解环境压力,也可以带来额外经济价值. 然而, 由于多电子利用效率低和C―C偶联动力学缓慢, 光还原CO2制多碳产品面临产率低和选择性差等挑战. 光催化剂活性位点调控能够有效解决上述问题. 我们综述了近几年用于光还原CO2催化剂表面活性位点设计的研究进展, 主要包括缺陷位点、 金属位点以及掺杂位点等, 从活性位点的角度为光还原CO2催化剂设计提供新视角, 并对开发高效光催化剂具有启发意义.  相似文献   
3.
为深入开展创新创业教育与实践,培养学生创新创业能力,提高本科生人才培养质量,进一步推动创新创业教育改革,南开大学开展了“国家级大学生创新创业训练计划”项目。化学学院结合学科自身特点,践行科教融合、理论联系实际的培养方法,不仅能够引导本科生积极参加科研训练,还能将本科生的创新结果应用于实际生产中。实现“科研反哺教学”与“教学支撑科研”这样一个相互补充、相互促进的统一体。本文介绍了一组比较典型的本科生参与“国创”项目的例子,从项目准备入手介绍了该“国创”项目的具体实施过程、同学们所遇困难及收获心得等,希望将我们积累的一些经验与化学相关专业的同学分享,助力他们更好地完成创新项目。  相似文献   
4.
为设计一种利用廉价催化剂以达成C—H活化构建C—S的方法,本文研究了铜催化C—H活化/C—S偶联反应合成系列环烷基芳基硫醚化合物。以芳基磺酰肼与环烷烃为原料,溴化亚铜为催化剂,二叔丁基过氧化物(DTBP)为氧化剂,120℃反应24 h,经氧化脱氮C—H活化/C—S偶联串联反应过程,合成了系列环烷基芳基硫醚化合物。该反应适合环戊烷、环己烷、环庚烷、环辛烷和环十二烷等环烷烃和不同取代基团(甲氧基、硝基、氯和甲基)的芳基酰肼,合成得到了18个芳基硫醚类化合物,产率为41%~72%。其结构经1H NMR、13C NMR和HR-MS进行了表征。  相似文献   
5.
吲哚-3-硫醚类化合物是一类重要的的生物活性分子,在医药以及农用化学品等领域具有广泛应用.如何通过简单、高效的方法构建此类结构单元,尤其是实现吲哚C-3原子上C—S键的选择性合成,已成为近年来高生物活性分子设计开发的重要手段.总结了通过吲哚3位C—H键直接选择性硫醚化制备吲哚-3-硫醚类化合物的方法,根据硫元素的不同来源对此类反应的研究进展进行综述.  相似文献   
6.
烯胺酮是一类非常重要的有机合成砌块,具有易获得、储存方便、反应多样性等优点.更重要的是,烯胺酮是许多杂环化合物的重要前体.最近,通过C—H活化对烯胺酮进行过渡金属催化或无过渡金属的α-官能团化反应已成为构建官能化烯胺酮或杂环化合物的一种更为原子和步骤经济的策略,并引起了许多有机化学家的关注.根据成键类型,该综述分为五个部分:C—C键的形成、C—O键的形成、C—N键的形成和C—X键的形成以及C—S/C—Se键的形成.主要对烯胺酮α位官能团化反应进行了综述,从反应机理、反应体系、底物范围等角度系统地综述了烯胺酮α位官能团化反应的进展.  相似文献   
7.
铁廉价,储量丰富,铁基催化剂具有独特的催化活性,其催化的羰基化反应备受化学家关注.烷基溴类化合物具有较高的解离能,酰胺和吲哚类化合物具有弱亲核性,上述性质使其发生羰基化转化具有一定的挑战性.本文发展了一种铁催化的酰胺化反应,使用羰基铁催化剂前体,在反应体系中原位生成低价态的活性铁催化中心,并对烷基类底物进行活化.随后发生一氧化碳对碳铁键的插入、酰基铁的生成、亲核试剂的进攻等反应,最后生成目标产品.在该催化体系作用下,未活化的烷基卤代物可以与胺、酰胺和吲哚发生反应,得到较高收率的酰胺、酰亚胺和N-酰基吲哚等化合物,并表现出较好的官能团兼容性.实验发现,含有天然产物骨架的原料也能够高效转化.在反应机理方面,本文进行了分子内、分子间自由基捕捉等研究,结合已报道的谱学研究结果,推断出低价态铁催化中心的存在.结合实验数据以及反应机理研究结果认为,该反应的反应历程是由底物决定的:当以烷基碘类化合物为原料时,经历的是单电子转移(自由基)过程;当以烷基溴类化合物时,经历的是双电子转移过程.综上,本文发展了一种铁催化的烷基卤代物的酰胺化反应,为烷基酰胺合成提供一定参考.  相似文献   
8.
C–N键广泛存在于药物、天然产物和功能材料中,而氮中心自由基在C–N键的构建中起到关键作用.但是,与广泛使用的碳中心自由基相比,氮中心自由基由于缺乏实用简便的产生方法而尚未得到充分研究.因此,发展高效的氮中心自由基引发反应迫在眉睫.在过去的几年里,得益于可信赖且可控制的自由基化学的兴起,可以通过热分解、氧化剂促进、金属盐催化或电催化来产生氮中心自由基.1,n-烯炔环化不仅可以一步反应同时构建形成两个或多个新的化学键,而且可以高选择性引入各种外部官能团,被认为是构建复杂环状化合物必不可少的方法.传统上,通过贵金属(例如Au、Pd、Rh、Ru等)和/或引发剂介导/催化来实现1,n-烯炔环化反应.1985年,Curran和他的同事报道了具有里程碑意义的工作,该方法通过碘代烯炔类化合物的分子内自由基串联环化反应实现了(±)-hirsutene的简洁全合成.受该工作的启发,并伴随着现代合成技术的发展,自由基启动的1,n-烯炔环化由于反应条件温和、具有较高的官能团兼容性、原子利用率高、通常不使用化学计量的金属催化剂和/或有毒引发剂,因而受到化学家们越来越多的关注.在此背景下,化学工作者已经开发了多种氮中心自由基启动的1,n-烯炔类化合物环化反应的方法.然而,据我们所知,目前还没有专门针对该主题的综述,因此本文及时进行总结分析.迄今为止,氮中心自由基启动的1,n-烯炔环化反应大概分为三种途径:(1)氮中心自由基选择性的与1,n-烯炔的C=C键进行加成反应,然后通过分子内环化以生成烯基自由基中间体,最后借助进一步环化反应、氢原子攫取或自由基偶联以得到最终产物;(2)涉及到氮中心自由基与1,n-烯炔的C≡C键的选择性加成反应、分子内环化及氧化脱氢;(3)借助分子内原位生成的氮中心自由基来启动的,随后经过两次分子内环化、单电子转移氧化及脱氢反应转化为最终产物.本文将依据氮中心自由基的类型,分为硝基自由基、叠氮自由基和酰胺自由基进行讨论,并将重点放在生成氮中心自由基的方法及其环化模式、相关反应机理以及存在的挑战上.  相似文献   
9.
王自强  朱晨 《有机化学》2021,(2):859-860
传统的烯烃二芳基化主要手段是,先通过过渡金属催化的芳基亲电试剂与烯烃发生交叉偶联,然后再与芳基亲核试剂发生反应[1].但是这种反应策略存在原子经济性低及反应步骤多的缺点.因此急需发展一种高效、高原子经济性的合成方法来实现烯烃的二芳基化.2015年,Bunel/Lei课题组[2]报道了FeCl3/2,3-二氯-5,6-二氰基对苯醌(DDQ)催化条件下苯乙烯的1,2-二芳基化;2017年,Bao课题组[3]报道了Fe(OTf)3/DDQ催化条件下苯乙烯的1,2-二芳基化。  相似文献   
10.
张剑  陆庆全  刘超  雷爱文 《有机化学》2015,35(4):743-759
近年来,过渡金属催化的氧化偶联反应已成为有机合成化学中构建碳—碳键以及各类碳—杂键的重要方法.主要综述了我们研究小组在氧化偶联领域,尤其是第三代氧化偶联反应方面所取得的研究进展,介绍了各类反应的特点、优势及在合成中的应用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号