首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   17篇
  国内免费   274篇
化学   429篇
晶体学   8篇
力学   3篇
综合类   4篇
物理学   55篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   14篇
  2020年   10篇
  2019年   4篇
  2018年   2篇
  2017年   10篇
  2016年   7篇
  2015年   9篇
  2014年   21篇
  2013年   11篇
  2012年   14篇
  2011年   16篇
  2010年   21篇
  2009年   23篇
  2008年   18篇
  2007年   23篇
  2006年   20篇
  2005年   25篇
  2004年   27篇
  2003年   15篇
  2002年   20篇
  2001年   18篇
  2000年   13篇
  1999年   14篇
  1998年   20篇
  1997年   12篇
  1996年   15篇
  1995年   8篇
  1994年   8篇
  1993年   13篇
  1992年   7篇
  1991年   12篇
  1990年   11篇
  1989年   10篇
  1988年   1篇
  1987年   3篇
  1986年   6篇
  1984年   1篇
  1983年   2篇
排序方式: 共有499条查询结果,搜索用时 14 毫秒
1.
Jiaxi Xu  Ning Chen 《大学化学》2020,35(7):166-170
环氧乙烷亲核开环的区域选择性规则是有机化学中典型脂肪三元杂环亲核性开环的选择性规则,具有普遍性。本文以非对称环氧乙烷的亲核性开环为核心,从开环反应过渡态稳定性的角度讨论了决定环氧乙烷亲核开环区域选择性的原因。介绍了该区域选择性规则在经过三元杂环正离子中间体的非对称烯烃亲电加成反应区域选择性教学中的应用。加强学生对不同反应的机理和选择性的联系,起到教学中融会贯通的作用,可以提高教学效率和效果。  相似文献   
2.
常用的氧化物负载金属催化剂通常在水相中制备,且在使用前常常需要经过煅烧. 因此,氧化物载体表面的水合和脱水过程对于负载型金属催化剂的真实建模至关重要. 通过第一性原理分子动力学模拟,本文考察了温和温度下无水单斜氧化锆(111)表面在显式溶剂水中的演化. 在模拟过程中,所有的双重配位桥位氧位点很快被溶剂水质子化,形成酸性羟基(HOL),并在锆原子上留下碱性羟基(HO*). 这些碱性羟基(HO*)可以与表面未解离的吸附水分子(H2O*$)进行活跃的质子交换,进而在表面自由扩散. 在273 K到373 K的温度范围下,第一性原理分子动力学水相模拟可以得到一种较为确定的、有代表性的平衡水合单斜氧化锆(111)表面,其表面锆原子上覆盖度(θ)为0.75. 随后,为了模拟低于800 K的温和煅烧温度下的表面脱水过程,本文使用密度泛函理论计算了表面水分子的逐步脱附自由能. 通过获得表面的脱水相图,总结了不同煅烧温度下有代表性的、部分水合的单斜氧化锆(111)表面(0.25≤θ<0.75). 这些水合单斜氧化锆(111)表面具有重要的理论意义,可以方便快捷地被应用于氧化锆催化剂及氧化锆负载金属催化剂的真实建模与模拟.  相似文献   
3.
考察烷基磷酸铝催化剂i-Bu3Al/H3PO4/DBU催化环氧乙烷(EO)、甘醇甲基缩水甘油醚(nGE)与烯丙基缩水甘油醚(AGE)二元及三元共聚合的催化性能,通过核磁共振波谱(NMR)、凝胶渗透色谱(GPC)和示差扫描量热仪(DSC)对共聚物微观结构和热性能进行表征分析。结果表明25℃甲苯溶剂中,i-Bu3Al/H3PO4/DBU催化剂可以高效催化不同比例的EO、nGE和AGE共聚合,以100%收率获得组成精确可控的高分子量EO-nGE二元及EO-AGE-nGE三元无规共聚物;nGE的醚链长度对聚合性能无影响,二甘醇甲基缩水甘油醚(2GE)和四甘醇甲基缩水甘油醚(4GE)均可实现可控引入聚环氧乙烷制备醚链改性聚环氧乙烷。EO-AGE-nGE三元共聚物以1,2-乙二硫醇为交联剂制备了交联聚合物。测试醚链改性聚环氧乙烷的性能,发现醚链长度、含量及交联对聚合物电导率和力学性能有很大影响。4GE为共聚单体的聚环氧乙烷电导率高于2GE。随着醚链含量增大,聚合物电导...  相似文献   
4.
使用基于多态经验价键模型的分子动力学模拟, 对水溶液中质子的水合结构及其在质子传递过程中的动力学过程进行了研究. 在价键模型的方法下, 质子的水合结构主要以H9O4+(Eigen)以及过渡态的H5O2+(Zundel)结构形态存在, 且在这两种结构中以Eigen的形态表现明显. 通过对质子传递过程中不同水合结构的态密度频谱分析, 发现一个在2000~3000 cm-1范围内的明显连续的宽吸收谱带, 主要归因于Eigen结构的贡献, 这些特征峰的出现与水合氢离子第一溶剂化层内的强氢键作用密切相关. 对于Zundel的结构, 在1760 cm-1处出现一个较为明显的肩峰, 归属为质子传递模式的特征振动. 通过对质子水合结构态密度频谱的分析, 可望增强对于稀酸溶液红外光谱中的连续宽吸收带以及质子传递的微观动力学过程的理解.  相似文献   
5.
建立了吹扫捕集-气相色谱/质谱法测定医用口罩中痕量环氧乙烷的方法。采用吹扫捕集法对医用口罩中环氧乙烷进行富集,热脱附后导入气相色谱/质谱仪,并选用选择离子模式(SIM)进行检测,内标法定量。结果表明:环氧乙烷在5.0~200μg/L质量浓度范围内线性关系良好,相关系数为0.9992,方法检出限为0.03μg/g,定量限为0.10μg/g。三个不同浓度加标水平(5.0μg/L、20μg/L、80μg/L)的回收率为97.59%~115.95%,相对标准偏差(RSD,n=6)为3.07%~7.48%。该方法操作简单、富集效率高、快速准确,适用于大批量医用口罩样品测定。  相似文献   
6.
制备了依托度酸和哌嗪的有机盐,并得到了其晶体结构。 结构解析结果表明,依托度酸羧基上的氢转移到哌嗪的氮原子上,N—H••••O氢键是维持结构稳定的主要分子间相互作用。 与原药相比,新合成的盐的本征溶出速率和平衡溶解度分别提高了2.1倍和4.8倍。 此外,新合成的盐具有良好的水合稳定性,在25 ℃,相对湿度95%的条件下暴露28 d未发生相变。作为依托度酸的第一个有机盐,该盐是依托度酸有前景的固体存在形式。  相似文献   
7.
对七水合三氯化铈-碘化钠(CeCl3·7H2O-NaI)化邻氨基苯硫酚、对氯邻氨基苯硫酚、间氨基苯硫酚、对氨基苯硫酚和对甲基苯硫酚与α,β-不饱和酮(1a~1o)的迈克尔加成反应进行了系统研究.结果表明,CeCl3·7H2O-NaI-SiO2复合催化剂能有效催化邻氨基苯硫酚及对氯邻氨基苯硫酚与α,β-不饱和酮(1a~1o)的迈克尔加成反应.在优化的反应条件下,即n(CeCl3·7H2O)∶n(NaI)∶n(α,β-不饱和酮)=1∶2∶2,m(CeCl3·7H2O)∶m(SiO2)=1∶1.6,三氯甲烷作溶剂,反应温度为回流温度,反应时间为2 h,反应可达到中等产率(43.1%~58.8%).催化剂重复使用4次基本稳定.此外,提出了可能的催化机理.  相似文献   
8.
β-羰基膦酸酯是一类重要的有机化合物和反应中间体,在有机合成及药物化学中发挥着重要的作用.提供了一种高原子经济性、高选择性、温和的炔基膦酸酯水合反应体系.实验结果表明:在阳离子金催化剂(2.5 mol%)的催化作用下,以1,2-二氯乙烷(1 m L)为溶剂,室温下炔基膦酸酯(1 mmol)与水(3 mmol)发生水合反应,高收率、高区域选择性地得到β-羰基膦酸酯化合物(收率≥92%).该方法具有底物适用范围广、反应条件温和、环境友好等优点,为含β-羰基膦酸酯结构单元的天然产物及复杂药物分子的合成提供了一种新途径.  相似文献   
9.
本文采用改性的中和反应和随后的热处理方法制备了较大产量的超级电容器用无定形水合二氧化钌材料(RuO2.0.93H2O),同时,制作了电极进行了电化学性能表征。实验中,以自制的喷雾装置和十二烷基磺酸钠(SDS)分别作为反应辅助技术和表面分散剂。经175℃处理前驱体后,实验获得了比表面积为223m2/g、蓬松状、深黑色无定形水合二氧化钌材料。研究了以Nafion为粘结剂和以碳纤维纸为集流体所制备电极的电化学性能。循环伏安实验(CV)结果表明,该合成材料具有较好的比电容(988F/g at 1mV/s)和倍率特性  相似文献   
10.
两性离子聚合物是指高分子链上含有相同数量阴、阳离子的有机高分子材料,其因强亲水性和反聚电解质效应而在润滑方面得到广泛研究. 一方面,两性离子聚合物可通过静电相互作用将润滑体系中的游离水吸附在材料表面,提高其润滑性能;另一方面,两性离子聚合物表面水合程度易受到润滑体系中盐离子类型和浓度影响,改变其润滑行为. 本文中首先介绍摩擦过程中存在的润滑形式,然后总结并分析两性离子聚合物结构及典型两性离子聚合物(例如磺酸根阴离子型两性离子聚合物、磷酸根阴离子型两性离子聚合物和羧酸根阴离子型两性离子聚合物)的润滑行为和机理,最后阐述和展望两性离子聚合物在润滑方面的研究存在的问题和前景.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号