首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2205篇
  免费   835篇
  国内免费   1929篇
化学   1530篇
晶体学   59篇
力学   772篇
综合类   93篇
数学   237篇
物理学   2278篇
  2024年   28篇
  2023年   100篇
  2022年   85篇
  2021年   92篇
  2020年   74篇
  2019年   97篇
  2018年   50篇
  2017年   100篇
  2016年   109篇
  2015年   104篇
  2014年   218篇
  2013年   195篇
  2012年   177篇
  2011年   186篇
  2010年   219篇
  2009年   229篇
  2008年   284篇
  2007年   280篇
  2006年   294篇
  2005年   239篇
  2004年   244篇
  2003年   202篇
  2002年   188篇
  2001年   136篇
  2000年   110篇
  1999年   116篇
  1998年   112篇
  1997年   81篇
  1996年   78篇
  1995年   98篇
  1994年   84篇
  1993年   73篇
  1992年   74篇
  1991年   50篇
  1990年   51篇
  1989年   54篇
  1988年   17篇
  1987年   8篇
  1986年   14篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1959年   2篇
排序方式: 共有4969条查询结果,搜索用时 31 毫秒
991.
以二吡啶并吩嗪为受体单元,三苯胺(TPA)为给体单元,设计合成了近红外(NIR)热激活延迟荧光(TADF)材料11,12-双[4-(二苯基氨基)苯基]联吡啶[3,2-a:2’,3’-c]吩嗪-3,6,10,13-四甲腈(FCNPZ-TPA).在FCNPZ-TPA分子的受体单元上引入4个氰基增加了受体单元的吸电子能力.考虑到TPA具有优异的给电子能力,将强给体-强受体单元同时引入分子骨架中,使得FCNPZ-TPA的发射波长红移到近红外区域.另外,给体(D)和受体(A)单元之间空间位阻导致FCNPZ-TPA具有扭曲D-A分子构型,从而实现了较小的单线态-三线态能级差(ΔEST).得益于FCNPZ-TPA分子刚性骨架以及较小的ΔEST,当FCNPZ-TPA掺杂在主体4,4’-二(9-咔唑)联苯中时,该有机支光二极管器件在发射波长为742 nm处实现了8.01%的最大外量子效率(EQE).  相似文献   
992.
离子整流性是纳米离子通道的一个重要特征,具有整流性的离子通道体系也被称为纳米流体二极管.本文比较了离子通道的泊松-能斯特-普朗克(PNP)方程组模型和固体半导体的扩散-漂移模型,提出可以使用二极管器件的仿真电路模拟器(SPICE)电路模型对离子通道体系的电流-电压(I-V)曲线进行模拟.以锥形离子通道的PNP数值模型的计算结果为基础,通过对这一体系进行讨论,给出一个锥形离子通道的SPICE电路模型,它可以较好地模拟I-V特性曲线.离子通道SPICE电路模型的建立可用于研究纳米流体二极管作为一个器件在电路中的应用.  相似文献   
993.
赵翔  袁铭泽  方仕童  李映辉 《力学学报》2023,(10):2228-2238
为研究轴向载荷及梁上外激励共同作用下自旋梁结构强迫振动的压电振动能量采集问题,文章提出运用格林函数法求解自旋梁压电俘能器强迫振动下的电压解析解.基于Euler-Bernoulli梁理论,采用扩展Hamilton原理及PZT-5A压电本构,建立了自旋梁压电俘能器强迫振动的力电耦合模型.采用Laplace变换法求得耦合振动方程的格林函数解,并根据线性叠加原理和格林函数的物理意义,对耦合的系统方程进行解耦,进而求得强迫振动下自旋梁压电俘能器的电压解析解.数值计算中,通过与现有文献中的解析解以及实验结果进行对比,验证了本文解的有效性,并分别分析了自旋梁压电俘能器的压电响应与电阻、转速等重要物理参数之间的关系.数值分析研究表明:(1)自旋梁俘能器的压电响应随电阻阻值的增大而增大,直至阻值达到最优负载电阻;(2)通过调高转速,可以提高压电俘能器的最大输出电压;(3)通过降低轴向载荷,可在保持俘能器高效工作的情况下改善俘能器的高基频现象.  相似文献   
994.
基于计算力学中的结构优化思想,应用一种新型的显式几何更新算法,自行编制C++程序,实现地下管道形状设计的自动优化。管道内的流体假设为牛顿不可压缩流,并考虑惯性项。优化区域主要为管道竖直方向和水平方向的过渡段。形状优化的设计变量是几何边界的有限元节点坐标,优化目标是实现流体黏性能耗散的最小化。优化过程基于形状梯度,即通过形状敏感度分析来求解目标函数相对于设计变量的偏导数。所使用的显式几何更新算法既可以通过网格清晰描述形状,也可以大范围地自动更新网格。详细介绍了地下管道自动形状优化过程的关键步骤。通过数值算例探讨了不同注入速度、密度和黏度对其最优形状的影响。  相似文献   
995.
基于岩石材料脆性断裂模型分析,从提高炸药能量向岩石断裂表面能转换效率的角度,提出采用预切槽和多点聚能射流冲击岩石进行裂纹引导与扩展,实现岩石定向劈裂。设计了一种可用于岩石劈裂的聚能装药,利用数值计算方法研究了岩石类脆性材料在聚能射流冲击作用下的定向劈裂机制,并计算比较了不同形状金属杆射流对岩体的冲击劈裂效果。分析计算该聚能装药射流形成与岩石的侵彻断裂过程,得出用于岩石劈裂的最佳聚能装药结构与炸高。实验成功用2枚聚能装药将岩石试块按预制方向劈裂,测试获得的岩石表面应力峰值约0.5~0.8 MPa。结果表明,采用该聚能装药在25 mm炸高下能够形成长径比约1∶3的楔形金属杆射流,沿着控界面预先设计的切槽方向,多点设置聚能装药,同时起爆后形成楔形金属杆射流冲击岩石,产生了较好的定向劈裂效果。该方法将爆炸能量精准导入控界面并有效地转换成岩石断裂表面能,从而提升了岩石定向劈裂的效果及炸药的能量利用率,研究结果可为大范围岩体开挖精确控界爆破切割装置设计及降低工程爆破危害提供参考。  相似文献   
996.
无序合金是一种新型金属材料,突破了传统的合金设计理念,表现出不同于传统合金的优异力学性能、冲击释能及剪切自锐特性,在高温、高压、高应变率等环境具有良好的应用前景。分析活性无序合金的冲击释能特性对其应用于军事领域有着重要的指导作用,能为弹药战斗部的设计提供参考。本文阐述了静动态力学实验中典型无序合金的反应释能现象;总结了撞击速度与活性无序合金释能超压、释能效率之间的关系;讨论了撞击速度、材料破碎程度及靶标特征等因素对活性无序合金释能机理的影响;归纳了制备工艺及元素类型对活性无序合金释能特性的调控效果。进一步,本文梳理了活性无序合金在破片、穿甲弹芯和聚能装药战斗部三个方向的应用研究进展,分析了活性无序合金毁伤元的侵彻行为和作用机制。最后,针对活性无序合金材料未来的发展趋势和需求进行了展望。  相似文献   
997.
为合理分析钢底板波形钢腹板梯形箱梁的畸变效应,按各板件面内外抗弯刚度不变的原则将全截面等效为钢材,利用圣维南原理考虑顶底板对波形钢腹板的约束作用,修正畸变扇性坐标分布模式,基于能量变分法建立畸变控制微分方程。与已有文献及有限元进行对比分析,并研究腹板俯角和波形钢腹板厚度变化对畸变翘曲正应力的影响。结果表明,本文解析解与文献解及ANSYS解均吻合较好;基于圣维南原理修正后的扇形坐标分布模式更合理;利用本文等效方法亦可分析传统波形钢腹板组合箱梁的畸变效应;腹板俯角的设置有利于减小畸变翘曲正应力;波形钢腹板厚度变化对腹板与底板交接处的畸变翘曲正应力影响显著。  相似文献   
998.
吴炬  程先华 《摩擦学学报》2006,26(4):325-329
研究了芳纶浆粕纤维增强环氧复合材料在干摩擦和水润滑条件下的摩擦磨损性能,探讨了纤维含量对复合材料摩擦磨损性能的影响,并分析了复合材料的磨损机理.结果表明:芳纶浆粕纤维能够大幅度提高环氧树脂的摩擦磨损性能;当纤维体积分数为40%时,复合材料的比磨损率最小;在水润滑条件下,复合材料的摩擦系数和磨损率均比干摩擦下的明显降低,这是由于水起到了润滑和冷却作用;干摩擦时的磨损机理为粘着磨损和塑性变形,水润滑时主要为犁削和轻微的磨粒磨损.  相似文献   
999.
废物利用是当前节能减排和绿色环保的要求,固体废弃物——粉煤灰,是一种有效的涂料填料,而且低品质的粉煤灰也可以用作填充剂增强涂料性能。尽管未燃炭对涂层的机械性能有不利影响,但是一定量的含炭粉煤灰反而提高了涂层的耐磨性能。672h后的中性盐雾试验结果表明,含有34.9%UC的粉煤灰涂层具有比脱炭粉煤灰涂层更好的耐盐雾性能。极化阻抗分析表明,含有10wt%CFA的涂层有更好的稳定性,耐腐蚀性能更佳。  相似文献   
1000.
能量极小化方法已广泛用于平面曲线的构造,而在空间曲线构造方面的应用尚少。首先介绍了空间参数曲线的弯曲能和扭曲能,然后提出了一种以弯曲能和扭曲能同时极小为目标的空间参数曲线构造方法,最后以空间三次Bézier曲线为例,探讨了该方法在曲线的构造、延拓、平滑等问题中的应用。所提出的方法更符合空间参数曲线既需考虑弯曲又需考虑扭曲的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号