首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8438篇
  免费   2817篇
  国内免费   6855篇
化学   11297篇
晶体学   701篇
力学   604篇
综合类   201篇
数学   112篇
物理学   5195篇
  2024年   64篇
  2023年   318篇
  2022年   399篇
  2021年   495篇
  2020年   404篇
  2019年   542篇
  2018年   362篇
  2017年   548篇
  2016年   566篇
  2015年   602篇
  2014年   1205篇
  2013年   1053篇
  2012年   923篇
  2011年   991篇
  2010年   948篇
  2009年   981篇
  2008年   999篇
  2007年   806篇
  2006年   953篇
  2005年   922篇
  2004年   766篇
  2003年   728篇
  2002年   529篇
  2001年   445篇
  2000年   291篇
  1999年   292篇
  1998年   192篇
  1997年   164篇
  1996年   111篇
  1995年   112篇
  1994年   72篇
  1993年   75篇
  1992年   60篇
  1991年   58篇
  1990年   49篇
  1989年   46篇
  1988年   12篇
  1987年   4篇
  1986年   9篇
  1985年   10篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
陈雪  祁明雨  李月华  唐紫蓉  徐艺军 《催化学报》2021,42(11):2020-2026
氨(NH3)作为合成燃料、化肥和潜在能源载体的重要前体,是现代化学工业中最重要的化学品之一.工业中主要通过高能耗的Haber-Bosch工艺在高温高压下将氮气和氢气转化为NH3,而原料氢气由天然气蒸汽获得,因而不仅消耗大量能源,而且导致温室气体二氧化碳的大量排放,对环境造成危害.光催化固氮以光能为驱动力,以水为质子源,为合成NH3提供了一种温和、绿色和可持续的方法.然而,传统固氮催化剂具有与N2结合弱、成键难以及电子转移效率低的缺点.为了克服上述问题,在催化剂中引入氧空缺和过渡金属作为给电子中心和活性位点的策略被广泛研究.本文以半导体Bi5O7Br纳米片作为研究对象,通过在水热合成过程中添加Na2MoO4前驱盐在Bi5O7Br中掺杂钼元素,合成了不同摩尔含量的钼掺杂Bi5O7Br(Mo-Bi5O7Br)纳米片,并将其应用于光催化N2还原反应,发现Mo-Bi5O7Br的光催化固氮性能显著优于空白Bi5O7Br的催化性能.扫描电镜、透射电镜、能量色散X射线元素映射以及X射线光电子能谱的结果表明,掺杂过程不会影响Bi5O7Br纳米片的晶相和形貌,掺杂后钼元素均匀地分布在Bi5O7Br纳米片晶格中.采用紫外可见漫反射光谱、电子自旋共振光谱、氮气程序升温脱附谱以及光电化学测试等方法研究了Mo-Bi5O7Br相较于空白Bi5O7Br纳米片在光催化N2还原反应中催化性能提升的原因.UV-vis DRS结果表明,钼掺杂对Bi5O7Br可见光吸收能力具有增强作用.以催化NH3产率最高的Mo-Bi5O7Br-1(Mo摩尔百分含量为1%)为研究样本,EPR结果表明,在黑暗条件下,只有Mo-Bi5O7Br-1样品可以检测到明显的表面氧空位(OVs)信号;在光照条件下,Bi5O7Br和Mo-Bi5O7Br-1两种样品都出现OVs的信号峰,但同等光照时间下的Mo-Bi5O7Br-1具有更高的信号强度.此外,OVs信号会随着光照时间的延长逐渐增强;当移除光源后,信号强度逐渐降低.这表明Mo-Bi5O7Br-1在光照下会产生更高浓度的表面光控OVs.N2-TPD结果表明,光控OVs作为活性位点促进催化剂对N2的吸附.关闭光源后,OVs被环境中的水或氧气中的氧原子重新填充,避免了OVs易被氧化而导致反应失活的缺点,有助于保持Mo-Bi5O7Br-1催化N2还原反应的活性和稳定性.光电化学表征结果表明,Mo-Bi5O7Br-1中的光生载流子的分离和迁移效率明显提高.以上结果表明,掺杂过渡金属钼有助于Bi5O7Br纳米片表面光控OVs的生成,光控OVs作为活性位点提升了Bi5O7Br吸附和活化N2的能力,钼掺杂和光控OVs协同提高Bi5O7Br内部光生载流子的分离迁移效率,增强Bi5O7Br光催化固氮合成氨的反应性能.  相似文献   
92.
将储量丰富的生物质及其衍生物转化为具有高附加值的燃料和化学品被认为是一种有前景的绿色途径,可以极大地减少人们对传统化石资源的依赖.作为木质纤维素热解的直接产物和生物油升级的模型化合物,香草醛可以通过加氢脱氧(HDO)过程选择性地转化为2-甲氧基-4-甲基苯酚(MMP).MMP是一种有价值的化学品,常用于香料和药物等重要中间体的合成.在过去十年里,大量的金属催化剂被用来催化香草醛HDO转化为MMP.其中,贵金属(Pt,Pd,Ru和Au)虽然活性高,但是其储量低、价格昂贵,不利于工业化应用;而非贵金属(Fe,Co,Ni和Cu)的催化活性普遍较低,需要苛刻的反应条件来提高转化效率和选择性.此外,这类HDO反应大都在有机溶剂中进行,容易造成环境污染.因此,开发高效、稳定的非贵金属催化剂用于水相HDO反应是一个巨大的挑战.一般来说,合金纳米颗粒(NPs)具有强烈的协同效应,能产生良好的配位结构和电子环境,从而显著提升催化活性和选择性.基于此,本文首次采用了一种简单可控的合成方法来制备三聚氰胺海绵负载的氮掺杂碳纳米管(N-CNTs)限域的Ni-Co合金NPs(NiCo@N-CNTs/CMF)催化剂.该催化剂具有优异的HDO性能,在2 MPa H2,120oC反应6 h条件下,能在水相中将生物质衍生的香草醛高效转化为MMP,转化率和选择性均达到100%.相比于单金属的Ni@N-CNTs/CMF和Co@N-CNTs/CMF催化剂,香草醛转化率和MMP选择性都有大幅度的提高.而且,在温和的反应条件下,该催化剂对香草醛衍生物和其他芳香醛类化合物同样表现出优异的HDO性能,拥有100%的转化率以及较高的MMP选择性(91.5%~100%).XPS结果表明,Ni-Co形成合金后发生了电子结构的偏移,即Co原子可以从邻近的Ni原子处得到电子,提高Co电子云密度,从而促进对香草醛中C=O键的吸附.DFT计算结果表明,相比于单金属的Ni和Co,Ni-Co合金化后能显著提高对C=O键的选择性吸附和活化.同时,H2解离后形成的活性H*物种在Ni-Co合金NPs表面更容易脱附并参与催化反应.因此,Ni-Co@N-CNTs/CMF催化剂优异的HDO性能主要是由于Ni-Co合金NPs的协同作用大大促进了其对C=O键的选择性吸附和活化,以及活化氢物种的脱附.本文为设计和制备高效的非贵金属催化剂应用于水相的HDO反应提供了一个新策略.  相似文献   
93.
王超  蒋伟  陈瀚翔  朱林华  罗静  杨文书  陈光英  陈志刚  朱文帅  李华明 《催化学报》2021,42(4):557-562,中插1-中插4
以铂系金属为代表的贵金属催化剂在工业反应中通常表现出优异的催化性能,这是因为其具有独特的d带电子结构和较高的价电子比.近年来,由于大气排放法规愈发严苛,铂系贵金属催化剂在催化空气氧化燃油脱硫方面的研究引起了广泛关注.在该催化反应中,铂系金属纳米粒子可以有效活化空气中的氧气,产生的活性氧物种可以将油品中的噻吩类硫化物氧化为其对应的强极性砜类物质,从而可以将其从非极性的油品中分离出来,有效实现油品中硫化物的深度氧化脱除.然而,在反应过程中铂系贵金属纳米粒子易发生流失和烧结,从而导致催化剂的失活.因此,急需寻找一类可以有效固载铂系贵金属纳米粒子的载体.在目前已报道的众多载体中,以ZrO2、TiO2、CeO2、ZnO等为代表的过渡金属氧化物引起了广泛的关注.通常认为,铂系贵金属纳米粒子的d轨道电子和过渡金属氧化物之间可形成金属-载体强相互作用.然而,目前所使用的过渡金属氧化物载体的比表面积较小,从而导致铂系贵金属纳米粒子难以有效且均匀地分散于其表面.本文采用热膨胀气相剥离法制备了超薄V2O5纳米片,并通过超声辅助沉积法将Pt纳米粒子固载于其表面,从而得到一系列可高效活化空气氧化脱硫的催化剂(Pt NPs-n/V2O5纳米片).通过电感耦合等离子体光谱、高倍透射电镜、原子力显微镜、X射线光电子能谱、X射线衍射、拉曼光谱和氮气吸附脱附等方法对催化剂的结构和形貌进行了表征.结果表明,尺寸为4-5 nm的Pt纳米粒子可有效均匀分散于层数约为6层的V2O5纳米片表面;在空气氧化脱硫反应中,当催化剂中Pt理论负载量为2 wt%时,反应5 h后,油品的脱硫率可达99.1%,实现了硫化物的深度氧化脱除.该反应体系对不同硫浓度、不同含硫底物的油品均有较好的脱除效果,但对含有烯烃、芳烃的油品脱除效果较差.此外,催化剂循环使用7次后,其脱硫活性仍无明显下降,表现出优异的重复使用性能.对反应后的催化剂进行表征,发现Pt几乎不发生流失,这可能是由于Pt纳米粒子和V2O5纳米片之间形成了金属-载体强相互作用.该结果为其他空气氧化反应的有效进行提供了新思路.  相似文献   
94.
95.
96.
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号