首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24463篇
  免费   6501篇
  国内免费   15845篇
化学   26454篇
晶体学   706篇
力学   1475篇
综合类   944篇
数学   3193篇
物理学   14037篇
  2024年   195篇
  2023年   788篇
  2022年   922篇
  2021年   870篇
  2020年   785篇
  2019年   935篇
  2018年   707篇
  2017年   931篇
  2016年   1133篇
  2015年   1219篇
  2014年   2262篇
  2013年   1917篇
  2012年   1913篇
  2011年   1930篇
  2010年   1911篇
  2009年   1928篇
  2008年   2301篇
  2007年   1951篇
  2006年   1910篇
  2005年   1869篇
  2004年   1931篇
  2003年   1746篇
  2002年   1602篇
  2001年   1580篇
  2000年   1258篇
  1999年   1140篇
  1998年   1135篇
  1997年   1039篇
  1996年   931篇
  1995年   1070篇
  1994年   916篇
  1993年   757篇
  1992年   771篇
  1991年   686篇
  1990年   622篇
  1989年   623篇
  1988年   176篇
  1987年   138篇
  1986年   109篇
  1985年   83篇
  1984年   50篇
  1983年   53篇
  1982年   9篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
李琳  孙宇璇  孙伟峰 《计算物理》2020,37(4):488-496
基于密度泛函的第一原理赝势平面波方法,计算晶体结构、电子结构和光学性质,研究硫钒铜矿化合物Cu3VS4、Cu3NbS4和Cu3TaS4的电子输运及电致变色特性,探讨作为透明半导体材料应用于太阳能电池和电致变色器件的可能性.电子结构的计算表明这类化合物是间接带隙半导体,其电子能带的导带底和价带顶分别位于布里渊区的X点和R点.价带顶的电子本征态主要来自于Cu原子的d电子轨道,而导带底电子态主要来源于VB族元素原子的d电子轨道.能带结构、电荷布居分析、电子局域化函数和光吸收及反射谱的计算表明这些硫钒铜矿化合物属于极性共价半导体,具有较高的电荷迁移率和优良的电致变色特性,可应用于高效电致变色器件.  相似文献   
92.
最近Anst?ter, et al. 发表了对阴离子-π复合物(I-·C6F6)的第一个定量谱学测量[J. Am. Chem. Soc. 141, 6132 (2019)],认为成键作用中相关作用占41%,静电作用占23%,得出相关作用占主导的结论. 本研究表明,该文献的“静电作用”中混入了Pauli排斥作用,后者在数值上抵消了前者的作用. 在复合物I-·C6F6中,发现静电作用是相关作用的两倍多,因而阴离子-π复合物中仍应是静电作用占主导.  相似文献   
93.
中国科学院近代物理研究所正在进行国际首台45 GHz全铌三锡超导离子源FECR(Fourth Electron Cyclotron Resonance)磁体的研制,该离子源磁体线圈由六个铌三锡超导六极线圈和四个铌三锡超导螺线管线圈组成。由于单根超导线绕制异形六极线圈(非标准鞍型)技术难度大,且铌三锡超导性能对应力敏感,为了测试单个铌三锡六极线圈性能能否达到设计指标,基于铝合金壳层结构和Bladder-Key精确预紧技术,设计了镜像磁场约束结构。本工作主要阐述了运用ANSYS参数化设计编程对镜像磁场结构进行优化设计的过程和优化后的镜像磁场结构,确定了室温预应力大小,并给出了线圈经过室温预紧、冷却降温和加电励磁后的最大等效应力。进一步结合实际六极线圈制作公差(±0.1 mm),分析和评估了公差对镜像磁场结构中六极线圈预应力施加的影响。  相似文献   
94.
针对闭环供应链非正规渠道在促进资源回收再利用的同时又对环境造成二次污染的情况,给出资源回收当量指标以综合考量渠道资源回收和再造污染效应,利用数学优化和数值仿真方法对比分析存在政府奖惩机制下非正规渠道的经济效应和资源回收效应,获得了非正规渠道积极社会效应的通用定理以及不同再造回收率和奖惩强度下非正规渠道社会效应的特点,给出了政府治理非正规渠道的参考建议和分析方法。  相似文献   
95.
微结构表面浸没水下所形成的液气界面对减阻等应用具有重要意义.液气界面的稳定存在是结构功能表面发挥作用的前提.因此,如何增强液气界面的稳定性以抵抗浸润转变过程,以及在液气界面失稳之后,如何实现去浸润过程以提高液气界面的可恢复性能,均具有重要的科学研究意义和实际应用价值,也是国内外研究关注的热点问题.本文针对具有多级微结构的固体表面,研究其在浸没水下后形成的液气界面的稳定性和可恢复性.通过激光扫描共聚焦显微镜对不同压强下液气界面的失稳过程和降压后的恢复过程进行原位观察,实验结果和基于最小自由能原理的理论分析相吻合.本文揭示了多级微结构抵抗浸润转变以及提高液气界面可恢复性能的机理:侧壁上的次级结构(纳米颗粒、多层翅片)通过增加液气界面在壁面的表观前进接触角增强了液气界面的稳定性;底面的次级结构(纳米颗粒和封闭式次级结构)可以维持纳米尺寸气核的存在,有利于水中溶解气体向微结构内扩散,最终使液气界面恢复.本文的研究为通过设计多级微结构表面来获得具有较强稳定性和可恢复性的液气界面提供了思路.  相似文献   
96.
刘俊卿  饶翼  文凡  王学明  薛晓敏  张陵 《应用力学学报》2020,(1):265-271,I0018,I0019
针对架空输电线路铁塔中常用的四地脚螺栓塔脚板进行了抗拉承载力试验和理论计算方法研究。首先,选取8个试件进行塔脚板抗拉承载力试验研究,分析塔脚底板板厚及有无加劲板对塔脚板抗拉承载力的影响;其次,通过有限元模拟塔脚板的应力分布情况,并结合“塑性分析,弹性设计”的思想,提出了一种基于屈服线理论的四地脚螺栓塔脚板抗拉承载力计算公式;最后,与试验结果、有限元仿真结果、已有技术规定中的计算结果进行了对比。结果表明:建议公式与试验结果和仿真结果较为吻合,相关技术规定中的计算结果偏于保守,验证了本文建议公式的精确性;底板厚度和加劲板的作用对塔脚板承载力影响较大。研究结果可为输电铁塔四地脚螺栓塔脚板结构设计提供参考。  相似文献   
97.
98.
采用基于密度泛函理论的第一性原理计算法研究了新型稀磁半导体Li_(1±)_y(Zn_(1-)_xFe_x)P (x=0, 0.0625;y=0, 0.0625)的电子结构、磁性及光学性质.结果表明,Fe的掺入使体系产生自旋极化杂质带,Fe的3d态与Li2s态,Zn4s态以及P3p态的态密度峰在费米能级处出现重叠,产生sp-d轨道杂化,此时体系净磁矩最大,材料表现出金属性,导电性增强.当Li空位时,导电性减弱,但杂质带宽度最大,居里温度最高.而Li填隙时,体系形成能最低,材料变为半金属性,表现为100%自旋注入,表明掺杂体系的磁性和电性可以分别通过Fe的掺入和Li的含量进行调控.对比光学性质发现,Li空位时,在介电函数虚部和复折射率函数的低能区出现新峰,扩大了对低频电磁波的吸收范围.能量损失函数表明掺杂体系具有明显的蓝移效应,且Li填隙时有更强的等离子共振频率.  相似文献   
99.
通过第一原理电子结构计算来研究有序多孔纳米网的电导特性变化的能带机理.能带结构分析结果表明:石墨烯纳米网超晶格(3m,3n)(m和n为整数)的电子本征态在布里渊区中心点发生四重简并;碳空位孔洞规则排列形成的石墨烯纳米网具有由简并态分裂形成的宽度可调带隙,无论石墨烯的两个子晶格是否对等.在具有磁性网孔阵列的石墨烯纳米网中,反铁磁耦合使对称子晶格的反演对称性增加了一项量子限制条件,导致能带结构在K点的二重简并态分裂成带隙.通过控制网孔密度能够有效调节石墨烯纳米网的带隙宽度,为实现新一代石墨烯纳米电子器件提供了理论依据.  相似文献   
100.
磨石强度直接关系到钢轨打磨车的持续作业能力和磨削效率,因此研究磨石强度对打磨行为及钢轨表面质量的影响,对于现场磨石的优选具有重要参考价值. 参照Vossloh磨石抗压强度,制备了三种不同抗压强度的磨石(GS-10,68.9 MPa;GS-12.5,95.2 MPa;GS-15,122 MPa)并开展相应的打磨试验和表征. 结果显示,GS-15相对GS-10打磨量降幅约80%,但磨削比增幅约88%,表明磨石强度增大,磨石耐磨性提高,但磨削能力下降. 磨石和钢轨表面形貌显示,磨石强度增大导致磨石自锐性变差,磨削机制逐渐从切削转变为耕犁. 打磨钢轨表面SEM、EDS、XPS分析结果表明磨粒的切削作用是导致磨削热产生的首要因素,且随着磨石强度的增大,钢轨表面烧伤程度降低,钢轨表面氧化产物中Fe2+含量上升而Fe3+含量下降. 钢轨剖面金相结果表明:磨石强度增大导致钢轨表面白层、塑性变形层厚度增加,使钢轨产生更严重的预疲劳. 因此,对钢轨打磨磨石强度的合理调控和选择,对于协调打磨效率和钢轨表面质量具有重要意义.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号