首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   23篇
化学   5篇
晶体学   13篇
物理学   264篇
  2015年   1篇
  2013年   1篇
  2011年   5篇
  2010年   7篇
  2009年   61篇
  2008年   71篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   5篇
  2003年   5篇
  2002年   10篇
  2001年   14篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
91.
Transient characteristics of upconverted emission (560 nm) of Er3+ in LiNbO3 crystals codoped with 0–7.4 mol% MgO were studied under pulse excitation at 800-nm wavelength. The results show that the transients display considerable Mg-doping-level-dependent nonexponential behavior and a clear Mg optical-damage-resistance threshold concentration effect. Below the Mg threshold concentration, the lifetime increases slightly with the increased Mg concentration. Above the threshold, however, the lifetime drops abruptly by 4–7 times and the nonexponential feature becomes more evident. It is found that each transient can be fitted by a double-exponential function contributed from isolated and clustered Er3+ sites. The fit parameters show that doping of MgO above the threshold concentration increases the clustered Er site concentration and the nonradiative cross relaxation probability. The Mg threshold concentration effect derived from the transients is in qualitative agreement with that from the fluorescence spectrum measured as a function of the Mg concentration. The effect of the Mg threshold concentration on the clustered Er site concentration is qualitatively explained on the basis of the microscopic defect model of MgO:LiNbO3 and is conducted with the Mg site change around the threshold concentration.  相似文献   
92.
Upconversion luminescence in triply ionized praseodymium-doped TeO2–Li2O glass using excitation at ∼590 nm into the 1D2 level from a dye laser pumped with the second harmonic of a pulsed Nd:YAG laser has been reported. The mechanism involved in the upconversion emission observed at ∼480 nm indicates that the most important contribution is energy transfer among praseodymium ions in pairs followed by the dipole–dipole interaction. The rate-equation model for the emission at ∼480 nm that provides direct information to determine the energy-transfer rates containing the pair of states involved in the upconversion process has been explored.  相似文献   
93.
The use of glasses doped with PbS nanocrystals as intracavity saturable absorbers for passive Q-switching and mode locking of c-cut Nd:Gd0.7Y0.3VO4, Nd:YVO4, and Nd:GdVO4 lasers is investigated. Q-switching yields pulses as short as 35 ns with an average output power of 435 mW at a repetition rate of 6–12 kHz at a pump power of 5–6 W. Mode locking through a combination of PbS nanocrystals and a Kerr lens results in 1.4 ps long pulses with an average output power of 255 mW at a repetition rate of 100 MHz.  相似文献   
94.
This study presents a novel approach for analyzing the interaction between two parallel surfaces grafted with polymer brushes in a good solvent. In the proposed approach, MD simulations are performed to establish the mean brush height and the standard deviation of the brush height distribution for a given value of the surface separation. The corresponding probability density function (PDF) of the brush height is then determined both with and without the assumption of a brush interpenetration effect, respectively, and a statistical technique is applied to compute the corresponding interaction free energy per unit area of the grafted substrates. Finally, the Derjaguin approximation is employed to determine the corresponding value of the interaction force between the two surfaces. The results obtained for the interaction free energy and interaction force are compared with those derived using the Alexander and de Gennes (AdG) model and the Milner, Witten and Cates (MWC) model, respectively. The value of the normalized interaction free energy computed using the present method is higher than that obtained from the AdG and MWC models at larger surface separations when the brush interpenetration effect is ignored. However, the results obtained by the current method for the interaction force are found to be in better agreement with the experimental data than those obtained using the AdG or MWC models. The enhanced performance of the proposed method is attributed primarily to the use of an adaptive non-Gaussian PDF of the brush height to model the effects of brush interpenetration and fluctuations in the brush conformation at different distances from the grafting plane.  相似文献   
95.
In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.  相似文献   
96.
We present direct measurements of the lifetime of the 4F5/2 and 2H(2)9/2 manifold in Nd3+:YLiF4, using a fluorescence pump-probe technique. The technique populates the 4F5/2 and 2H(2)9/2 manifold directly with a pump pulse. Via excited state absorption from this excited manifold, the 2F(2)5/2 manifold of Nd3+ is populated with a delayed probe pulse. The population in the 4F5/2 and 2H(2)9/2 manifold is monitored as a function of time by observing the change in integrated UV fluorescence from the 2F(2)5/2 manifold for each time delay between pump and probe pulses. The pump and probe beams come from the fundamental and second harmonic wavelengths of a femtosecond Ti:sapphire regenerative amplifier. The measured lifetime agrees well with the energy gap law, based on other nonradiative lifetime measurements from the literature for Nd3+:YLiF4.  相似文献   
97.
crystal with the size up to Φ 13 mm×44 mm was grown successfully by the Czochralski technique and its optical properties were presented. The absorption cross-section and emission cross-section were presented. Also, the potential laser gain near 1.9 μm was investigated. In the framework of the Judd-Ofelt (J-O) theory, the intensity parameters were calculated to be: Ω2=11.375×10−20 cm2, Ω4=5.077×10−20 cm2 and Ω6=6.524×10−20 cm2. The spectroscopic parameters of this crystal such as the oscillator strengths, radiative transition probabilities, radiative lifetime as well as the branching ratios were calculated, too. This crystal is promising as a tunable infrared laser crystal.  相似文献   
98.
99.
This paper investigated on the dehydration of Er3+-doped phosphate glasses using O2 + CCl4 bubble flow method. The influence of parameters of dehydration effect was studied systemically. It was found that the dehydration rate was rather rapidly at the initial stage of bubbling. Increasing gas flow rate and temperature could drive the dehydration process toward lower OH concentration in the melts. The dehydration process was carried out in open system and analyzed by thermodynamic theory of open system, which clarified the process of eliminating of OH groups from the glass melts with bubbling time and gas flow rate. A time-dependent empirical equation about reaction rate constant was derived, and the relationships between rate constant and bubbling flow rate, and temperature were also discussed. This analytical method could be applicable to the dehydration of glass melt using other dehydration agents.  相似文献   
100.
We describe a physically associating triblock copolymer-based gel that exhibits a reversible transition between solid and liquid states at a temperature of approximately 55°C. The thermal transition of the gel enables us to compare the properties of liquid suspensions and elastic composites with identical particle loadings, with particle volume fractions as large as 0.55. The suspension viscosity and the composite elasticity scale in a similar manner with the overall particle volume fraction, a result that is rationalized in terms of an effective strain amplification factor that depends only on the particle loading. Measured values of the strain amplification factor are in good agreement with the expected form for well-dispersed spheres. We also find that the elastic composites are exceptionally strong, with fracture strengths that exceed the modulus of the base gel by a factor of 100 or more. Deviations from purely elastic behavior became important for high particle volume fractions, and were probed by stress relaxation experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号