首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   515篇
  国内免费   811篇
化学   1175篇
晶体学   193篇
力学   7篇
综合类   37篇
数学   6篇
物理学   856篇
  2024年   15篇
  2023年   102篇
  2022年   90篇
  2021年   148篇
  2020年   81篇
  2019年   99篇
  2018年   94篇
  2017年   75篇
  2016年   91篇
  2015年   120篇
  2014年   150篇
  2013年   161篇
  2012年   138篇
  2011年   113篇
  2010年   79篇
  2009年   61篇
  2008年   79篇
  2007年   65篇
  2006年   66篇
  2005年   68篇
  2004年   61篇
  2003年   66篇
  2002年   32篇
  2001年   31篇
  2000年   45篇
  1999年   24篇
  1998年   17篇
  1997年   18篇
  1996年   16篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
排序方式: 共有2274条查询结果,搜索用时 46 毫秒
81.
有机无机杂化固态太阳能电池的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
袁怀亮  李俊鹏  王鸣魁 《物理学报》2015,64(3):38405-038405
近年来, 由于钙钛矿材料优良的光学吸收和电荷传导特性, 有机无机杂化固态太阳能电池取得了突破性的进展. 自2009年首次报道了光电转换效率为3.8%的钙钛矿太阳能电池以来, 该类电池的效率不断突破. 基于介孔薄膜的电池已取得了超过16.7%的认证光电转换效率, 基于平板异质结结构电池光电转换效率达到19.3%, 已接近传统硅基太阳能电池的光电转换效率. 本文将介绍有机无机杂化钙钛矿作为光电材料的光学物理结构特性, 以及在固态太阳能电池中的应用. 基于固态钙钛矿太阳能电池结构上的差异, 分别介绍其在多孔结构、平板异质结结构、柔性结构以及无空穴传导材料结构电池工作特性和各自优势, 以及影响电池特性的主要影响因素, 特别是钙钛矿成膜控制等. 并阐述对钙钛矿电池的理解和进一步提高固态钙钛矿电池光电转换效率需要关注的重点以及展望.  相似文献   
82.
自从2009年首次报道采用有机-无机杂化钙钛矿作为吸光材料用于太阳能电池以来, 钙钛矿太阳能电池效率的快速提升引起了人们广泛的关注, 这类电池同时具有制备工艺简单、成本低廉等优点, 引发了钙钛矿电池的研究热潮. 目前研究工作大多数集中在如何提高电池的光电转化效率, 但钙钛矿电池要真正实现产业化应用, 急需要解决材料及器件的稳定性问题. 本文探讨影响钙钛矿材料及器件的稳定性因素, 从温度及湿度等方面分析了材料的稳定性, 从传输材料及其界面问题讨论了器件的稳定性.  相似文献   
83.
王志国  向俊尤  徐宝  万素磊  鲁毅  张雪峰  赵建军 《物理学报》2015,64(6):67501-067501
采用传统的高温固相烧结法制备了双层钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2 O7 (x=0, 0.025)多晶样品. 通过X射线衍射仪研究发现样品为Sr3Ti2O7型四方结构, 空间群为I4/mmm; 磁性测量表明, Gd3+掺杂后的样品(La0.975Gd0.025)4/3Sr5/3Mn2O7的三维磁有序转变温度(TC13D)、磁化强度(M)均降低, 这是由于Gd3+的掺杂引起晶格的畸变, 从而使得晶格常数发生改变, 减弱了铁磁耦合而导致的; 通过电子自旋共振谱测量发现, 在TC3D<T<300 K温度范围内, 两样品在顺磁的基体上均有短程的铁磁团簇存在, 出现了相分离现象. 电性测量表明: 两样品分别在TC13D (La4/3Sr5/3Mn2O7 样品的三维磁有序转变温度, TC03D)<T<300 K温度范围内均以三维变程跳跃的方式导电, 分析得出Gd3+的掺杂使得载流子局域长度的减小. 这表明载流子需要吸收更多的能量才能克服晶格的束缚进行跳跃, 因此(La0.975Gd0.025)4/3Sr5/3Mn2 O7 样品的电阻较高.  相似文献   
84.
制备了一种有机铅卤钙钛矿-有机本体异质结杂化串联太阳能电池。采用紫外可见吸收光谱、原子力显微镜对薄膜形貌进行了表征。结果表明:有机本体异质结层可以有效改善钙钛矿的表面形貌, 增强了可见光的吸收。优化后的串联结构电池的短路电流可达19.14mA/cm2, 开路电压为0.76V, 光电转换效率达到了6.54%。钙钛矿电池和有机本体异质结电池串联结构可以同时提高短路电流及填充因子, 二者具有较好的相容性和协同作用。  相似文献   
85.
A_2BO_4型类钙钛矿材料因其独特的物化性能,可应用于催化、固体氧化物燃料电池等领域。本文简要介绍了A_2BO_4型类钙钛矿材料的结构和非化学计量氧(δ)的研究方法,对材料的δ分子模拟研究进展进行了综述,重点介绍了材料非化学计量氧迁移、输运机制的分子模拟研究现状,包括未掺杂纯相、A位掺杂和B位掺杂A_2BO_4型类钙钛矿三类材料,同时也对该领域的发展趋势进行了展望。  相似文献   
86.
采用共沉淀法分别制备了不同F-T组分(Fe、Co、Ni)改性的KCuZrO_2催化剂,并用于催化CO加氢合成异丁醇。通过BET、XRD、TEM、XPS、H_2-TPR、CO-TPD以及in-situ DRIFTS对催化剂进行了表征。结果显示,F-T组分的加入促进了乙醇和丙醇的形成,但是对异丁醇选择性影响不同。结果表明,Fe促进了催化剂中各组分的分散,活性组分Cu在催化剂表面发生了富集,提高了H_2/CO活化吸附;另外,KFeCuZrO_2的催化剂表面含有较多的C_1物种,有利于乙醇和丙醇进一步发生β-加成反应得到异丁醇,而Co和Ni改性的催化剂上缺少足够的C_1物种,因此,异丁醇的选择性并未明显增加。Co的引入对催化剂结构以及Cu的分散影响不大,但是Co改性后催化剂性能有所下降,其原因是催化剂发生了失活;Ni添加后催化剂比表面积有所减小,且催化剂表面Cu/Zr物质的量比也降低到0.19,催化剂粒径增大,Cu-Zr之间相互作用减弱,异丁醇选择性降低。  相似文献   
87.
以钙钛矿型复合氧化物LaNi_(0.9)Co_(0.1)O_3和LaNi_(0.9)Cu_(0.1)O_3为前驱体制备了Ni-Co/La_2O_3和Ni-Cu/La_2O_3双金属合金催化剂。结果表明,双金属合金催化剂中,各组分间相互稀释,具有较强的抗烧结性能;催化剂表面的积炭主要取决于CO在催化剂表面的吸附形态,Ni-Co双金属催化剂中,Co掺杂改变了CO在催化剂表面的吸附形式和吸附强度,使得Ni-Co双金属催化剂具有较强的抗积炭性能。Ni-Co双金属合金催化剂用于CO甲烷化反应时,显现出较好的活性、选择性和稳定性。  相似文献   
88.
以卟啉分子H2-pTCPP作为基础染料,通过配位自组装的方法将天线分子S3修饰到染料结构中。结果表明经天线分子修饰后染料敏化太阳能电池器件的整体性能得到了极大的改善。天线效应有效地提高了器件的光子捕获能力,光电流得到了显著的提高,并且电荷复合行为也得到了明显的抑制。基于H2-pTCPP的电池器件显示了1.18%的转换效率,而经过天线分子修饰后的Mn-pTCPP+S3显示了2.64%的转换效率,性能提高了1.2倍。  相似文献   
89.
方乐  #  虞敬  #  郭冠伦  * 《燃料化学学报》2020,48(6):735-740
为了研究La_(0.7)Sr_(0.3)CoO_(3-δ)钙钛矿催化剂对碳黑的催化氧化过程,本研究通过研究催化剂和碳黑的两种不同接触方式,即紧密接触与松散接触,讨论了其对碳黑催化氧化过程的影响。结果表明,与松散接触和无催化剂接触条件相比,紧密接触条件下碳黑的tig(起燃温度)分别下降了89.5和157.4℃,同时随着催化剂/碳黑的比例增加,碳黑氧化的tig、tm(最大转化温度)、tf(燃净温度)均向低温区域移动,表明该催化剂对碳黑有着良好的催化氧化性能。  相似文献   
90.
苝二酰亚胺类小分子由于其固有的强分子聚集特性,导致活性层形貌难于调控,器件效率相对于近年来报道的受体-给体-受体型稠环小分子受体一直处于劣势.针对这一关键问题,我们设计并合成了三个以吡咯并吡咯二酮为中心核的双臂型和四臂型苝二酰亚胺类小分子受体.其中,c-PDI2nc-PDI2两个双臂型分子分别将两个苝二酰亚胺臂置于吡咯并吡咯二酮核心骨架的碳取代位和氮取代位;四臂型PDI4是将四个苝二酰亚胺臂置于吡咯并吡咯二酮核心骨架的四个取代位.通过对三个受体小分子的光谱吸收、能级水平、薄膜形貌以及光伏性能的详细研究,发现三个受体小分子都拥有扭曲的分子结构并由此带来无定形薄膜形貌,表明其分子聚集趋势得到了有效的抑制.相对于双臂型受体分子,四臂型PDI4具有更强的光吸收能力和电子传输性能,从而获得了8.45%的最高光电转换效率,是c-PDI2器件效率的2倍和nc-PDI2器件效率的1.5倍.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号