首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10524篇
  免费   4010篇
  国内免费   3167篇
化学   3749篇
晶体学   146篇
力学   539篇
综合类   345篇
数学   3793篇
物理学   9129篇
  2024年   71篇
  2023年   308篇
  2022年   407篇
  2021年   377篇
  2020年   270篇
  2019年   394篇
  2018年   267篇
  2017年   383篇
  2016年   404篇
  2015年   533篇
  2014年   1053篇
  2013年   752篇
  2012年   906篇
  2011年   983篇
  2010年   918篇
  2009年   847篇
  2008年   1190篇
  2007年   911篇
  2006年   816篇
  2005年   700篇
  2004年   752篇
  2003年   651篇
  2002年   536篇
  2001年   487篇
  2000年   407篇
  1999年   316篇
  1998年   310篇
  1997年   292篇
  1996年   284篇
  1995年   265篇
  1994年   194篇
  1993年   147篇
  1992年   143篇
  1991年   119篇
  1990年   132篇
  1989年   83篇
  1988年   30篇
  1987年   16篇
  1986年   13篇
  1985年   13篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
81.
二维材料是一种新型的分离材料,具有原子尺寸、机械强度优异、比表面积大、表面化学丰富以及 物理、化学稳定性良好等特性,引起了分离科学领域研究人员的广泛关注,其中以石墨烯为典型代表。随着 对石墨烯材料的广泛研究,相继发展了二维过渡金属硫化物(TMDs)、层状双氢氧化物(LDHs)、金属有机框 架(MOFs)、共价有机骨架(COFs)、二维过渡金属碳化物或碳氮化物(MXene)、六方氮化硼(h-BN)等多种新 兴二维材料。该文介绍并讨论了二维材料及其量子点的特点及应用,重点介绍了二维材料及其量子点在膜分 离、固相萃取/固相微萃取、液相色谱、气相色谱、毛细管电色谱等分离科学领域中的应用。此外,还探讨了 二维材料在分离科学领域中面临的挑战及应用前景。  相似文献   
82.
以柠檬酸三钠为碳源,采用微波辅助制备碳点,用β-环糊精(β-CD)和碳点复合制备出碳点/β-CD复合物,并用荧光、紫外、红外光谱等进行表征。在pH=6.6的磷酸盐缓冲溶液中,尿酸可使碳点/β-CD复合物的荧光增强,探讨了反应时间、反应温度、缓冲溶液及pH对荧光增强程度的影响,建立了测定尿样中尿酸含量的方法。碳点/β-CD复合物荧光增强程度与尿酸浓度在1.0×10^-6 mol·L^-1~3.0×10^-5 mol·L^-1范围内有良好的线性关系,回归方程为ΔF=4.8517 c+0.0106,相关系数r=1.00,检出限为4.7×10^-7 mol·L^-1。将该方法用于测定尿样中尿酸的含量,得到了令人满意的结果。  相似文献   
83.
吴星辰  梁文慧  蔡称心 《化学进展》2021,33(7):1059-1073
碳量子点(CQDs)一般是指粒径小于10 nm的零维碳材料,因其具有优良的光学特性而在生物成像、光学器件、生物复合材料和生物传感等领域得到广泛应用,并有望成为未来应用最广泛的一种碳材料。CQDs的光学特性受粒径、表面官能团及合成的条件(如温度、溶剂的种类和pH等)的影响,为了精准调控其光学性能以及进一步扩大其应用范围,需对其光致发光(Photoluminescence,PL)机制进行详细研究。然而,CQDs的PL机制尚不完全明确,目前,已提出的PL机制有量子限域效应、表面态发射、碳核和荧光分子、多环芳烃分子发射、自陷激子模型、表面偶极子发射中心、聚集发射中心、多发射中心、缓慢的溶剂弛豫和溶剂化效应等。但这些发光机制都只能在一定程度上解释CQDs的部分PL现象,还没有一种机制能解释CQDs的所有PL现象,严重制约了对CQDs光学特性的调控。本文对CQDs不同的PL机制进行分类和总结,希望为进一步阐明其PL机制及实现CQDs 光学特性的可控调节提供参考。  相似文献   
84.
陈规伟  龚正良 《电化学》2021,27(1):76-82
石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一。但锂金属负极界面浸润性与锂枝晶问题限制了其应用。本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建了一层稳定的硼酸三锂(Li3BO3)修饰层。研究表明,Li3BO3修饰层可以有效改善石榴石固体电解质与锂金属负极界面接触,促进锂的均匀沉积/溶出,从而抑制锂枝晶生长,提高界面稳定性。Li3BO3修饰后石榴石电解质片与锂金属之间紧密结合,Li/石榴石界面阻抗由修饰前的1780 Ω·cm2降低至58 Ω·cm2。得益于界面接触的改善,Li3BO3修饰后的LLZTO电解质组装的对称电池可以在0.1 m·cm-2的电流密度下稳定工作超过700 h。而未修饰的对称电池在0.05 mA·cm-2的电流密度下短时间工作即出现微短路现象。  相似文献   
85.
通过油溶法成功地制备出不同粒径大小的二硫化钼,并探究了单层二硫化钼尺寸效应对荧光性质的影响。其中反应时间为3 h制备出的二硫化钼量子点为单层结构,3种尺寸的二硫化钼的荧光光谱和拉曼光谱研究表明,当粒径或激发波长增大时,荧光谱图中峰位发生红移。  相似文献   
86.
张鑫  姜锐  杨戍  孙立权  庞思平  罗爱芹 《色谱》2017,35(3):252-254
制备了一种新型荧光分子印迹膜(L-半胱氨酸修饰的量子点嵌入的分子印迹膜(QDs@MIM)),并将其作为荧光人工受体用于目标蛋白质(溶菌酶)的特异性识别和检测。QDs@MIM以溶菌酶为模板分子、丙烯酰胺为功能单体、L-半胱氨酸修饰的量子点为辅助单体、N,N′-亚甲基双丙烯酰胺为交联剂,在预硅烷化的玻璃板上制备而成。在最佳条件下,QDs@MIM对溶菌酶检测的线性范围为0.1~1.0μmol/L,吸附平衡时间为4 min,选择性因子为6.2。该方法操作简单、吸附平衡时间短、选择性高,具备作为生物传感器快速分析样品中目标蛋白质的潜力。  相似文献   
87.
在玻碳电极表面聚合一层对氨基苯甲酸导电膜,通过羧基配位作用将具有优良导电性及催化能力的铜金属有机框架化合物(Cu-MOFs)自组装在对氨基苯甲酸修饰电极表面,制备了铜-金属有机框架物修饰电极。对Cu-MOFs进行了表征,研究了修饰电极的伏安特征及对甲硝唑(MNZ)的电催化特性,建立了一种高灵敏度的测定甲硝唑的电化学分析方法。在1.0~100.0μmol/L浓度范围内,MNZ的还原电流与其浓度呈良好的线性关系,检出限达0.23μmol/L,方法已用于蜂蜜样品中MNZ的测定。  相似文献   
88.
制备了甘氨酸-壳聚糖复合膜修饰玻碳电极(Gly-CTS/GCE),研究了抗坏血酸(AA)和尿酸(UA)在该修饰电极上的电化学行为。结果表明在pH=5.59的磷酸盐缓冲溶液中,AA、UA在Gly-CTS/GCE上均产生灵敏的不可逆氧化峰,其峰电流与浓度在一定范围内呈良好的线性关系。对AA和UA混合溶液平行测定7次,相对标准偏差分别为4.6%、2.9%,表明该电极重现性和稳定性良好。AA、UA在Gly-CTS/GCE电极上的氧化峰峰电位相差340mV,据此可实现对二者的同时检测,并可应用于实际样品测定。  相似文献   
89.
将量子点的荧光特性、表面分子印迹技术与计算机模拟技术相结合,分别以碲化镉、4-硝基苯酚、3-氨丙基三乙氧基硅烷和正硅酸四乙酯作为量子点、模板分子、功能单体和交联剂,制得具有荧光特性的分子印迹聚合物.对其结构、形貌、荧光性能和选择性进行了表征,结果表明,该聚合物对4-硝基苯酚具有良好的选择性和灵敏度,线性范围为1.0~80 nmol/m L,检出限为0.05 nmol/m L.将制备的量子点荧光印迹聚合物作为传感器,应用于河水中4-硝基苯酚的测定,加标回收率为98.6%~101.2%,相对标准偏差最高为1.37%.  相似文献   
90.
通过溶剂热法控制合成了花生形氧化锌纳米材料,并利用扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)和傅里叶变换红外光谱(FTIR)对材料进行了表征和分析.循环伏安和Nyquist测试结果表明,该材料具有良好的电化学导电性,且对对硝基苯酚(p-NP)具有良好的选择性.侧分脉冲伏安法(DPV)测试结果表明,在p-NP浓度为0.8~24μmol/L和32~80μmol/L这2个浓度范围内,电流强度与浓度呈线性关系,通过3倍信噪比计算得出检测限分别为0.25和0.61μmol/L.该材料修饰的电极具有良好的稳定性和重现性,用于实际样品中p-NP含量的测定显示出优良的效果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号