首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6532篇
  免费   2387篇
  国内免费   955篇
化学   2771篇
晶体学   109篇
力学   150篇
综合类   94篇
数学   44篇
物理学   6706篇
  2024年   41篇
  2023年   212篇
  2022年   211篇
  2021年   202篇
  2020年   190篇
  2019年   229篇
  2018年   176篇
  2017年   243篇
  2016年   242篇
  2015年   272篇
  2014年   471篇
  2013年   442篇
  2012年   486篇
  2011年   461篇
  2010年   435篇
  2009年   390篇
  2008年   414篇
  2007年   386篇
  2006年   401篇
  2005年   345篇
  2004年   402篇
  2003年   382篇
  2002年   356篇
  2001年   284篇
  2000年   285篇
  1999年   246篇
  1998年   245篇
  1997年   199篇
  1996年   229篇
  1995年   213篇
  1994年   178篇
  1993年   103篇
  1992年   132篇
  1991年   124篇
  1990年   104篇
  1989年   86篇
  1988年   18篇
  1987年   19篇
  1986年   11篇
  1985年   7篇
  1984年   1篇
  1983年   1篇
排序方式: 共有9874条查询结果,搜索用时 156 毫秒
81.
为了使用单细胞电感耦合等离子体质谱(SC-ICP-MS)方法准确测定单个细胞中的铬(Cr)、锰(Mn)、铁(Fe)、铜(Cu)和锌(Zn)等多种内源性金属元素,该文基于动态反应池(DRC)模式对目标分析物的反应气流量和极杆抑制参数q(RPq)进行了优化,并研究了进样速度、细胞密度、驻留时间等因素对SC-ICP-MS检测的影响。分别采用细胞悬液直接进样、使用超声波探头使细胞悬液中的细胞破碎后进样和使用浓硝酸消解细胞后进样的ICP-MS测定结果对SC-ICP-MS定量结果的准确性进行验证分析。实验结果表明,可采用超声波破碎细胞的ICP-MS测定结果评估SC-ICP-MS测定的单细胞内Zn和Cu含量的准确性,采用酸消解细胞的ICP-MS检测结果验证单细胞内Fe和Cr的含量。缺少细胞标准物质时对SC-ICP-MS方法定量结果进行多角度验证是必要的。研究表明,使用SC-ICP-MS法可以较好地进行单细胞元素相关分析。  相似文献   
82.
对用电感耦合等离子体质谱法测定纯铁中21种元素(包括Li、Be、B、Al、Ti、Mn、Co、Ni、Cu、Zn等),通过加入高纯铁作为基体,试验考察了不同量的铁基体对上述被测元素的信号强度的影响。结果发现:铁基体质量浓度在40mg·L^(-1)以内时,待测元素的相对信号强度与铁基体浓度保持较好的线性关系;当铁基体质量浓度增大至400mg·L^(-1)时,除了Mn、Co两元素外,铁基体对其他待测元素均产生一定的抑制作用。基于对内标元素的基体效应分析,选择与待测元素有相似基体效应的内标元素,以校正基体效应。  相似文献   
83.
0.500 0g样品经硝酸3mL、过氧化氢2mL消解后,采用电感耦合等离子体质谱法同时测定样品溶液中Na、Mg、Ca、Al、Cu、Zn、Fe、Mn、Se、Pb、Cd、As、Hg和Cr的含量。采用0.5%(体积分数)硝酸的基体酸度增强分析元素的信号强度;在两次测试之间用100μg·L-1 Au-5%(体积分数)硝酸溶液清洗仪器,降低Hg的吸附效应;利用甲烷碰撞动态反应池技术消除了分析过程中的质谱干扰,选择Sc、Y、In、Bi为内标元素校正基体效应。14种元素的质量浓度在一定范围内与信号强度呈线性关系,检出限(3s)在0.003~0.039μg·L^(-1)之间。方法用于分析国家标准物质GBW 10027,各元素测定值与认定值相符,测定值的相对标准偏差(n=6)在1.6%~14%之间。  相似文献   
84.
采用电化学方法制备Ag@AgI/Ni表面等离子体薄膜催化剂,使用扫描电镜(SEM),X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、光谱特性以及能带结构进行分析表征,在模拟太阳光照射下,把罗丹明B作为模拟污染物对薄膜的光催化活性与稳定性进行评价,采用向反应体系中加入活性物种捕获剂的方法对薄膜光催化机理进行探究。结果表明:最佳工艺下制备的Ag@AgI/Ni薄膜表面是由附着少量Ag粒子的AgI纳米晶构成。薄膜具有显著的表面等离子共振作用、优异的光催化活性和突出的光催化稳定性。光催化反应60 min,薄膜对罗丹明B的降解率(81.1%)是AgI/Ni薄膜的1.35倍,是TiO_2(P25)/ITO薄膜的1.61倍。在薄膜光催化活性基本保持不变的前提下可循环使用5次。薄膜表面纳米Ag的等离子共振对光阴极反应的活化是光催化性能提高的重要原因。提出了薄膜光催化降解罗丹明B的反应机理。  相似文献   
85.
通过集成在线富集和在线热消解技术,建立了基于微波等离子体原子发射光谱法(MP-AES)的地表水中重金属的在线检测技术,对珠江干流之一的西江水样中重金属元素(Cd,Cu,Cr,Ni,Pb,Fe,Mn和Zn)进行现场同时在线监测。结果表明,该在线检测技术对这些重金属元素的定量检测能力满足地表水环境质量标准(GB 3838-2002)的限量要求;据环境标准样品中重金属元素分析结果,测定值与配制标准值一致;自来水加标样品的回收率为81.5%~102%。该检测技术对重金属的检出限为1.14~5.34μg/L,检测结果的相对标准偏差(RSD)为0.79%~9.4%,方法可满足地表水中重金属的现场、快速、连续、准确监测需求。  相似文献   
86.
研究了将抗坏血酸加入到样品中作为增敏剂,以电感耦合等离子体质谱测定汞的增敏效应。考察了硝酸浓度、抗坏血酸浓度、水浴温度和时间等实验条件对增敏作用的影响。结果表明,在5%硝酸,500 mg·L~(-1)的抗坏血酸,水浴温度50℃,时间为20 min的条件下,汞的灵敏度最高,此时,汞的灵敏度增强近30倍,其检出限低至1 ng·L~(-1)。在汞浓度为0.005~10.0μg·L~(-1)范围内线性关系良好,相关系数为0.999,相对标准偏差为5.6%(0.1μg·L~(-1),n=7)。该文还进一步探讨了抗坏血酸产生增敏作用的机理。  相似文献   
87.
钱承敬  武鹏 《分析测试学报》2017,36(8):1051-1054
铁系催化剂的残留污染一直是煤间接液化技术生产费托合成油工艺生产和产品质量控制的重点关注问题之一。准确分析合成油中微量残留铁的含量已成为工艺开发过程中至关重要的手段。该文对不同检测方法进行了对比,以燃烧灰化样品等离子体发射光谱检测铁含量的方法对不同沸点的合成油样品进行了验证,并通过实验数据优化了检测方法中的关键步骤。经验证费托合成油样品前处理最优条件为称样量5 g,马弗炉于500℃灰化1 h。该法对铁含量测定的回收率大于95%,相对标准偏差(RSD)不大于5.7%,检出限及定量下限分别为0.15 mg/kg和0.50 mg/kg。  相似文献   
88.
光纤表面等离子共振(Fiber optic surface plasmon resonance,FO-SPR)传感器由于体积小、易携带、抗电磁干扰等优点在生物、化学、医学及食品领域均具有广阔的应用前景。该文综述了光纤SPR传感器的结构、膜材料及其应用进展。其中终端反射式和在线传输式是光纤SPR传感器最重要的两种结构;最常用的膜材料包括金膜、银膜、复合膜和金属纳米颗粒。基于光纤SPR的实时检测、抗干扰能力强、可多通道检测等特点展望了其未来发展与应用前景。  相似文献   
89.
建立了微波消解-电感耦合等离子体发射光谱法同时测定哈氏C-276合金中Cr、Fe、Mo、W元素含量的分析方法.采用10 m L HCl-HNO3-HF(体积比为10:1:1)混合酸溶解试样.研究了合金不同溶解方式、元素谱线的选择、背景校正等试验条件,并对仪器分析参数进行了优化,确定了最佳的试验条件,各元素分析谱线依次为Cr2 67.716 nm、Fe 238.204 nm、Mo 202.031 nm、W 209.712 nm,建立的校准曲线各元素相关系数均在0.999 5以上.实际样品分析中,加标回收率为97.8%~102.7%,重复测定结果的相对标准偏差小于1.64%(n=6),试验测定结果与镍基标准样品标准值做对照,结果表明方法准确、快速,能够满足日常生产的检测要求.  相似文献   
90.
采用化学浸提-电感耦合等离子体发射光谱法(ICP-OES)测定粉条中溶出铝的化学形态及其含量.实验结果显示,粉条溶出铝中,Al3+为135 μg/g,Al(OH)2+和Al(OH)2-未检出,胶态Al(OH)3o为143 μg/g,有机铝为460 μg/g.各化学形态铝含量的回收率在88.3%~105%范围,精密度(RSD)为1.14%,方法检出限为0.74 mg/kg.该方法准确度高,精密度好,检出限低,线性关系好,是一种简便实用的食品、药物中活性铝化学形态的检测方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号