首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   24篇
  国内免费   1篇
化学   21篇
力学   78篇
数学   10篇
物理学   370篇
  2023年   25篇
  2022年   32篇
  2021年   49篇
  2020年   43篇
  2019年   3篇
  2018年   21篇
  2017年   17篇
  2016年   36篇
  2015年   16篇
  2014年   53篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   4篇
  2006年   19篇
  2005年   9篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有479条查询结果,搜索用时 23 毫秒
81.
基于光纤耦合反射式光束偏转法,提出了一种可用于瞬态力学量测试的光学传感器,并详细给出了该测试机理.采用该传感器,在靶材对心处实时检测到由于空泡在固体靶材附近溃灭时射流冲击力引起的靶材瞬态微小变形.通过对该传感器定标可以进一步得到作用冲击力大小.这种传感器的应用将有助于了解激光诱导产生空泡射流运动特性及其对靶材的损伤机制.  相似文献   
82.
应崇福 《应用声学》2008,27(5):333-337
再次强调了大规模液体中超声处理、以及为此目的研究声空化的重要性。提出了对这项应用中声空化行为的几点思考,重点是关于声空化的"强度"以及关于电动力式和流体动力式两类产生空化系统所产生空化的不同特性。  相似文献   
83.
Objective and motivationThe method for measuring derived acoustic power of an ultrasound point source in the form of a sonotrode tip has been considered in the free acoustic field, according to the IEC 61847 standard. The main objective of this work is measuring averaged pressure magnitude spatial distribution of an sonotrode tip in the free acoustic field conditions at different electrical excitation levels and calculation of the derived acoustic power at excitation frequency (f0  25 kHz). Finding the derived acoustic power of an ultrasonic surgical device in the strong cavitation regime of working, even in the considered laboratory conditions (anechoic pool), will enable better understanding of the biological effects on the tissue produced during operation with the considered device.Experimental methodThe pressure magnitude spatial distribution is measured using B&;K 8103 hydrophone connected with a B&;K 2626 conditioning amplifier, digital storage oscilloscope LeCroy Waverunner 474, where pressure waveforms in the field points are recorded. Using MATLAB with DSP processing toolbox, averaged power spectrum density of recorded pressure signals in different field positions is calculated. The measured pressure magnitude spatial distributions are fitted with the appropriate theoretical models.Theoretical approachesIn the linear operating mode, using the acoustic reciprocity principle, the sonotrode tip is theoretically described as radially oscillating sphere (ROS) and transversely oscillating sphere (TOS) in the vicinity of pressure release boundary. The measured pressure magnitude spatial distribution is fitted with theoretical curves, describing the pressure field of the considered theoretical models. The velocity and displacement magnitudes with derived acoustic power of equivalent theoretical sources are found, and the electroacoustic efficiency factor is calculated. When the transmitter is excited at higher electrical power levels, the displacement magnitude of sonotrode tip is increased, and nonlinear behaviour in loading medium appears, with strong cavitation activity produced hydrodynamically. The presence of harmonics, subharmonics and ultraharmonics as a consequence of stable cavitation is evident in the averaged power spectral density. The cavitation noise with continuous frequency components is present as a consequence of transient cavitation. The averaged pressure magnitude at the frequency components of interest (discrete and continous) in the field points is found by calculating average power spectral density of the recorded pressure waveform signal using the welch method. The frequency band of interest where average power spectral density is calculated is in the range from 15 Hz up to 120 kHz due to measurement system restrictions. The novelty in the approach is the application of the acoustic reciprocity principle on the nonlinear system (sonotrode tip and bubble cloud) to find neccessary acoustic power of the equivalent acoustic source to produce the measured pressure magnitude in the field points at the frequency components of interest.ResultsIn the nonlinear operating mode, the ROS model for the considered sonotrode tip is chosen due to the better agreement between measurement results and theoretical considerations. At higher excitation levels, it is shown that the averaged pressure magnitude spatial distribution of discrete frequency components, produced due to stable cavitation, can be fitted in the far field with the inverse distance law. The reduced electroacoustic efficiency factor, calculated at excitation frequency component as ratio of derived acoustic power with applied electrical power, is reduced from 40% in the linear to 3% in the strong nonlinear operating mode. The derived acoustic power at other frequency components (subharmonic, harmonic and ultraharmonic) is negligible in comparison with the derived acoustic power at excitation frequency.Discussion and conclusionsThe sonotrode tip and loading medium are shown in the strong cavitation regime as the coupled nonlinear dynamical system radiating acoustic power at frequency components appearing in the spectrum. The bubble cloud in the strong nonlinear operating mode decreases the derived acoustic power significantly at the excitation frequency.  相似文献   
84.
王地  关怀  高楠  于萍  邹海艳 《应用声学》2009,28(2):125-128
目的:比较两种超声发生器对化学反应的促进作用。方法:首先用碘释放测量法进行实验,分别用气哨式流体动力式超声发生器和槽式超声清洗仪处理碘化钾溶液,采用分光光度法测定碘化钾溶液的吸光度。随后分别用流体动力式超声与槽式超声提取黄芩,采用高效液相色谱法测定黄芩苷含量。结果:经流体动力式超声发生器和槽式超声清洗仪处理的碘化钾溶液的吸光度分别为0.990和0.498。以水为溶剂用流体动力式超声提取黄芩,黄芩苷含量显著高于槽式超声。结论:流体动力式发生器(每升能耗0.0156kwh)的空化效应高于槽式超声清洗仪(每升能耗0.0148kwh)。  相似文献   
85.
Ultrasonic irradiation of mesoporous silica soaked in a mixture of chloroauric acid and isopropanol for 120 min in Ar atmosphere at room temperature yielded Au/SiO2 mesoporous composite, which was characterized by high resolution transmission electron microscopy and optical absorption measurement. The structure of mesoporous silica after sonochemical preparation of gold (Au) nanoparticles within its pores was studied by nitrogen adsorption technique. It has been shown that the structural parameters, such as specific surface area (SSA), porosity (P), the mean pore diameter (lp) were increased significantly after ultrasonic irradiation. It is suggested that the collision of Au nanoparticles with pore walls and localized erosion induced by the asymmetric implosive collapse of cavities on the extensive liquid–solid interface that are responsible for the structural change in the mesoporous solid.  相似文献   
86.
The process of growth of an individual cavity in a viscoelastic adhesive layer has been investigated experimentally. The formation of cavities was caused by the application of a negative pressure on a very confined layer with a flat-ended probe. The cavities appeared in the bulk of the adhesive layer and were observed for a range of values of applied stress approximately ten times higher than the shear modulus of the adhesive layer. Depending on the loading rate, the shape of the growing cavity changed from a flat disc to a more spherical shape. Furthermore, the growth rate of the cavity radius was consistent with a constant strain rate at the edge of the cavity, which suggests a constant level of stress at the edge of the cavity. Received 5 June 2002 RID="a" ID="a"Current address: Ethicon, Johnson & Johnson, Route 22 West, P.O. Box 151, Somerville, NJ 08876-0151, USA. RID="b" ID="b"e-mail: costantino.creton@espci.fr  相似文献   
87.
《Electroanalysis》2004,16(6):442-449
A discrete Fourier transform (DFT) technique was used to analyze chronoamperometric currents at a Pt microdisk electrode (Ø=15 μm) in an electrolyte containing [Fe(CN)6]3?/[Fe(CN)6]4? under ultrasound at a frequency of 26.3 kHz and the powers of 0–50 W. The currents were measured by a high‐speed data acquisition card. Considering the effects of acoustic vibrations and cavitations on the limiting currents, a microdisk electrode and a high frequency sampling (10 MHz) were used to collect the current signals to restrain the deviation of average from sampling period in other methods. The results show that the amplitudes at 0 Hz and 26.3 kHz are related to the decay of ultrasound at constant power output when the separation between sono‐horn and electrode increases, and also related to the reactant concentration at the same ultrasonic conditions. The frequency signals are always shown in frequency spectrum despite different ultrasonic conditions. The amplitudes reflect the intensity of ultrasound and the concentration of reactant in solution, so they can be called specific frequencies. This method can be used to analyze quantitatively the effects of ultrasound on electrochemical reaction, determine the reactant concentration and measure the distribution of ultrasonic intensity in a solution.  相似文献   
88.
This paper describes the application of a novel broadband acoustic sensor to evaluating the acoustic emissions from cavitation produced by a typical commercial 20 kHz sonochemical horn processor. Investigations of the reproducibility of the processor, and of the variation in cavitation emissions as a function of output setting and sensor location are described, and resulting trends discussed in terms of the broadband integrated power in the megahertz frequency range. Companion studies with a conventional membrane hydrophone have illustrated for the first time that cavitation emissions produced by a sonochemical horn processor can extend to frequencies beyond 20 MHz, and the sensor shows that significant nonlinearity can be seen in measured cavitation activity with increasing nominal output power.  相似文献   
89.
90.
We propose a simple mechanical model describing viscoelasticity and cavitation during the debonding process in pressure-sensitive adhesives (PSA). Our calculation qualitatively reproduces typical stress-strain curves in the probe-tack test, such as the steep stress maxima and the following plateau region. It is shown that in the thin-film geometry the stress-strain curve is essentially determined by the cavities created by the large negative pressure. Effects of pre-existent air bubbles due to surface roughness are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号