首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   24篇
  国内免费   1篇
化学   21篇
力学   78篇
数学   10篇
物理学   370篇
  2023年   25篇
  2022年   32篇
  2021年   49篇
  2020年   43篇
  2019年   3篇
  2018年   21篇
  2017年   17篇
  2016年   36篇
  2015年   16篇
  2014年   53篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   4篇
  2006年   19篇
  2005年   9篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有479条查询结果,搜索用时 15 毫秒
31.
Ultrasound-assisted soil washing processes were investigated for the removal of heavy metals (Cu, Pb, and Zn) in real contaminated soils using HCl and EDTA. The ultrasound-assisted soil washing (US/Mixing) process was compared with the conventional soil washing (Mixing) process based on the mechanical mixing. High removal efficiency (44.8% for HCl and 43.2% for EDTA) for the metals was obtained for the most extreme conditions (HCl 1.0 M or EDTA 0.1 M and L:S = 10:1) in the Mixing process. With the aide of ultrasound, higher removal efficiency (57.9% for HCl and 50.0% for EDTA) was obtained in the same extreme conditions and similar or higher removal efficiency (e.g., 54.7% for HCl 0.5 M and L:S = 10:1 and 50.5% for EDTA 0.05 M and L:S = 5:1) was achieved even in less extreme conditions (lower HCl or EDTA concentration and L:S ratio). Therefore, it was revealed that the US/Mixing was advantageous over the conventional Mixing processes in terms of metal removal efficiency, consumption of chemicals, amount of generated washing leachate, and volume/size of washing reactor. In addition, the heavy metals removal was enhanced for the smaller soil particles in the US/Mixing process. It was due to more violent movement of smaller particles in slurry phase and more violent sonophysical effects. In order to understand the mechanism of ultrasonic desorption, the desorption test was conducted using the paint-coated beads with three sizes (1, 2, and 4 mm) for the free and attached conditions. It was found that no significant desorption/removal of paint from the beads was observed without the movement of beads in the water including floatation, collision, and scrubbing. Thus, it was suggested that the simultaneous application of the ultrasound and mechanical mixing could enhance the physical movement of the particles significantly and the very high removal/desorption could be attained.  相似文献   
32.
The detailed study of the initial and collapse processes of the laser-induced cavitation requires nanosecond resolution (both nanoseconds exposure and nanoseconds interframe time) of the photography measurement system. The high-speed video cameras are difficult to achieve nanoseconds interval time. The framing and streak cameras are able to reach the nanosecond resolution, but their complex technology and expensive prices make them far from being commercially available. The present study builds a nanosecond resolution photography system based on PIV dual-head laser and conventional industrial camera. The exposure time of the photography system is controlled by the laser pulse width, which is 5 ns. The two heads of the PIV laser are operated independently thus the smallest time interval between two laser pulses can be set to less than 10 ns. A double-pulse per-exposure imaging technique is used to record the information from two laser pulses on single frame on a low-speed industrial camera. The nanosecond resolution photography system was applied to the laser-induced cavitation experiments to verify the reliability of the measurement results. The measurement of the shock wave velocity demonstrates the ability of the system to capture ultrafast phenomena, which reduces from 3611 m/s to approximately 1483 m/s within 400 ns. The experimental results also reveal the asymmetric evolution of laser-induced cavitation bubbles. The major axis of the ellipsoidal bubble has twice reversals along the laser propagation and perpendicular direction from the laser-induced breakdown to the first collapse.  相似文献   
33.
Gold catalysts have attracted attention for enabling sustainable chemical processes under ambient conditions. This reactivity is attributed to the small size of the catalysts (<5 nm); however, their size also creates difficulty when removing from product streams and often require rare-metal additives to enhance reaction rate kinetics, thereby limiting the environmental benefits of these catalysts. Comparatively, submicron gold catalysts are easier to separate but are much less reactive under ambient conditions. In this study, we synthesized submicron gas-stabilising gold nanocones (gs-AuNCs) that are acoustically responsive to afford greater reaction rates than other conventional gold catalysts. We explore the catalytic performance of acoustically responsive gs-AuNCs exposed to focussed ultrasound at 5.0 MPa peak negative pressure and 1.1 MHz center frequency. Cavitation nucleated from gs-AuNCs significantly increased the sonocatalytic degradation of water pollutants without the need for co-catalysts. The ability to amplify catalysis with ultrasound by tailoring the morphology of the catalyst to control cavitation opens new paths for future designs of sonocatalysts that may enable a sustainable chemical approach needed for a broad range of industrial processes.  相似文献   
34.
This study evaluated the application of ultrasound alone or combined with chlorine dioxide (ClO2) for Salmonella Typhimurium and Escherichia coli inactivation in poultry processing chiller tank water. A Full Factorial Design (FFD) 22 was conducted for each microorganism to evaluate the effect of ultrasound exposure time (x1: 1 to 9 min; fixed: 37 kHz; 330 W; 25 °C) using a bath, and ClO2 concentration (x2: 1 to 17 mg L−1) on microorganism count expressed in log CFU mL−1 in distilled water. Variable x2 had a negative effect on Salmonella Typhimurium (-5.09) and Escherichia coli (-2.00) count, improving the inactivation; while a x1 increase present no inactivation improvement, explaining the use of x1 lower level (1 min) and x2 higher level (17 mg L−1). The best condition for microorganism inactivation based on FFD was evaluated in chiller tank water (with organic matter) at 25, 16, and 4 °C; x1 was kept (1 min), however x2 was adjusted to obtain the same residual free chlorine (2.38 mg L−1) considering the ClO2 consumption by organic matter, achieving the value of 30 mg L−1. An inactivation of 49% and 31% were observed for Salmonella Typhimurium and Escherichia coli. When ultrasound was replaced by a simple agitation in the presence of ClO2, there was no inactivation for both microorganisms. Moreover, at poultry carcass pre-chilling (16 °C) and chilling (4 °C) conditions, the synergism of ultrasound combined with ClO2 was more pronounced, with microorganisms’ reductions up to 100%.  相似文献   
35.
王顺杰  程玉胜 《应用声学》2012,31(6):438-444
水下高速目标对转螺旋桨常工作在空化状态,其噪声线谱由前后桨相互作用及前后桨与船舶尾流场的相互作用引起。通过Goldstein的声相似方程,将空泡看作螺旋桨的一部分,对空化条件下水下对转螺旋桨的线谱频率进行了理论预报。推导出了远场条件下单极子源性质的声源所产生的声压表达式,得到了其线谱预报频率。对实测水下高速目标进行了线谱预报,通过比较发现预报值与实测线谱频率具有较高的吻合度。  相似文献   
36.
In this paper, four sensor types are presented for quantitative measurements in an ultrasonic cleaning vessel: (1) a hydrophone to measure spectral components of the sound field; (2) an aluminium foil technique as a model process for erosion; (3) a test tube filled with a solution of luminol to measure the emission of light; and (4) a test tube filled with potassium iodide solution to measure the oxidation of iodide. Thus a broad range of diverse cavitation effects is covered. The quantities were measured in dependence on three parameters: the electrical input power of the transducers, the temperature and the O2 concentration of the water. To ensure constant environmental conditions, a flow system was built up which continuously exchanges the water in the vessel. The comparability of the data measured in subsequent measurement cycles is discussed and the influence of the different sensor types on the cavitation field is considered. Dependences on the three parameters are shown. A quantitative analysis of correlations between the data is carried out in the second part of the study (Koch and Jüschke, 2012 [1]).  相似文献   
37.
We prove that energy minimizers for nonlinear elasticity in which cavitation is allowed only at a finite number of prescribed flaw points can be obtained, in the limit as ε→0, by introducing micro-voids of radius ε in the domain at the prescribed locations and minimizing the energy without allowing for cavitation. This extends the result by Sivaloganathan, Spector, and Tilakraj (SIAM J. Appl. Math. 66:736–757, 2006) to the case of multiple cavities, and constitutes a first step towards the numerical simulation of cavitation (in the nonradially-symmetric case).   相似文献   
38.
超声珩磨区实际气体的单空泡动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步揭示功率超声振动的珩磨机理,以珩磨液为工作介质,研究了功率超声珩磨环境中实际气体的单空泡动力学特性。基于Rayleigh-Plesset方程,应用实际气体绝热方程和范德瓦尔斯方程对其进行了修正,建立了功率超声珩磨环境中实际气体的单空泡动力学方程以及实际气体单空泡共振频率方程。并运用4~5阶RungeKutta法模拟了不同超声条件(声压幅值、空泡初始半径、振动频率)对泡壁的运动以及运动速度的影响。结果表明:较高的声压幅值,空泡理论共振半径R'0与初始半径R0的比值为102数量级以及较低的超声频率有利于超声珩磨磨削区空化效应的发生。  相似文献   
39.
Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size distribution of cavitation bubble population in opaque media and might be a promising tool for applications where it is desirable to tune the ultrasound parameters to control the size distribution of cavitation bubbles.  相似文献   
40.
It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号