首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   146篇
  国内免费   159篇
化学   255篇
晶体学   14篇
力学   55篇
综合类   11篇
数学   80篇
物理学   295篇
  2024年   4篇
  2023年   31篇
  2022年   29篇
  2021年   23篇
  2020年   19篇
  2019年   44篇
  2018年   43篇
  2017年   22篇
  2016年   34篇
  2015年   22篇
  2014年   51篇
  2013年   52篇
  2012年   36篇
  2011年   17篇
  2010年   22篇
  2009年   24篇
  2008年   21篇
  2007年   33篇
  2006年   26篇
  2005年   20篇
  2004年   10篇
  2003年   12篇
  2002年   11篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   12篇
  1996年   11篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   10篇
  1991年   3篇
  1990年   1篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1965年   2篇
  1963年   1篇
排序方式: 共有710条查询结果,搜索用时 296 毫秒
71.
采用TEAOH溶液处理MFI结构ZSM-5分子筛、MWW结构MCM-22分子筛,NaOH溶液处理TON结构ZSM-22分子筛、CHA结构SSZ-13分子筛得到四种结构的扩孔分子筛。在反应温度480℃、反应压力0.1 MPa、甲醇与水质量比1∶1、甲醇质量空速1.5 h~(-1)的条件下,考察了四种扩孔分子筛的甲醇制丙烯(MTP)催化性能,并采用XRD、N_2吸附-脱附、NH_3-TPD、TG、UV-Raman和GC-M S等方法表征催化剂的物化性质及M TP反应2 h后的分子筛积炭性质。结果表明,四种分子筛扩孔改性后均出现介孔,其中,T-ZSM-5分子筛在MTP反应中寿命最长;T-MCM-22分子筛寿命次之且失活速率慢;而一维孔道结构N-ZSM-22分子筛和八元环尺寸较小的N-SSZ-13分子筛均失活迅速。受拓扑结构和孔道扩散的影响,MTP反应2 h后,分子筛积炭量增加的顺序为T-ZSM-5N-ZSM-22T-MCM-22N-SSZ-13且可溶焦分子质量随积炭量增加而增重,即从五甲基苯增重到菲、芘等多环芳烃。  相似文献   
72.
甲基异丁基酮 (MIBK) 是一种重要的化学品, 广泛应用于涂料以及有机合成领域, 下游产品包括特种涂料溶剂、高品质脱蜡溶剂和高性能橡胶防老剂等. 近年来随国民经济的快速发展, 甲基异丁基酮的年需求量与价格逐年上升, 应用领域也不断拓宽. 因此, 开展 MIBK 绿色合成工艺的研究对提高原子经济性、打破国际技术壁垒以及满足国内市场需求具有重要意义. 目前生产 MIBK 最绿色、高效的生产方法是丙酮一步法, 包括缩合、脱水以及加氢等一系列反应过程, 该工艺顺利实施的关键在于所使用的催化剂. 根据丙酮一步法合成 MIBK 反应特点, 所用催化剂表面必须具备多种催化活性中 心, 从而保证缩合、脱水以及加氢反应的顺利进行, 实现从反应物到产物的高效转化. 因此, 高活性和高选择性多功能催化剂的制备是提高 MIBK 生产效率的有效途径.本文采用浸渍法将具有加氢活性的贵金属 Pd 负载在表面具有丰富酸性位点或碱性位点的固体酸或固体碱氧化物载体上, 制备了 Pd/MOx(M = Ti, Ce, Al, Si, La, Ca和Mg) 双功能催化剂, 并用于丙酮一步法合成 MIBK 反应中. 结果表明, Pd基金属-酸/碱双功能催化剂均可以催化该连串反应的进行, 其性能高于 Pd 基金属-酸双功能催化剂, 其中 Pd/MgO 催化剂上丙酮转化率为30.67%, MIBK 产率可达27.61%. 构效关系研究显示, 催化剂表面酸性位点和碱性位点对于该连串反应的各反应步骤催化性能有所不同, 其中碱性位点有利于丙酮缩合反应, 而酸性位点有利于二丙酮醇脱水反应, 且强路易斯碱性中心位点可以更好的催化缩合反应的进行, 同时中强度路易斯酸性中心位点具有最佳的催化脱水反应的能力. 此外, 表面具有最强路易斯碱性中心位点 Pd/La2O3催化剂并未表现出最高的MIBK产率, 说明在丙酮一步法合成MIBK反应中, Pd基双功能催化剂表面各位点间的协同对其催化性能具有重要的影响.本文进一步采用水热法和沉淀沉积法制备了系列MgTiOx、MgAlOx和CaTiOx二元复合氧化物 (MMO) 以及 CaMgAlOx和 TiMgAlOx三元MMO, 并以其为载体, 通过浸渍焙烧还原制备 Pd 基多功能催化剂, 并用于丙酮一步法合成MIBK反应中,发现Pd/MgAl-MMO多功能催化剂具有最高的催化活性及 MIBK 产率. 对其表面多功能位点数量进行调变, 并通过 XRD、CO2-TPD、NH3-TPD、吡啶红外、CO2红外和HRTEM等进行表征, 结果表明, 经过450 ℃焙烧酸碱中心摩尔量比为0.4的0.1%Pd/Mg3Al-MMO多功能协同催化剂三种催化活性中心位点协同作用最佳, 其丙酮转化率为38.20%, MIBK产率可达31.63%. Pd/Mg3AlMMO多功能协同催化剂三种活性位点接近性研究表明, 在多功能催化剂中分离酸中心活性位点、碱中心活性位点以及加氢活性位点后, 获得的双功能催化剂产率均明显下降, 说明Pd/Mg3Al-MMO多功能催化剂在三种活性位点相互接近时才能更好催化反应的进行. 根据多功能催化剂构效关系研究结果, 对各催化活性中心的密度及分布进行调控, 结果显示, 通过沉淀沉积法制备的Pd/Mg3Al-MMO催化剂性能进一步提高, 丙酮转化率为42.11%, 产率高达37.20%.  相似文献   
73.
食用油中甘油三酯(Triacylglycerols,TAGs)的含量及种类快速高效的检测方法对保障人体健康具有重要意义。本研究基于基质辅助激光解吸电离-傅里叶变换离子回旋共振质谱(MALDI-FTICR-MS)技术建立了一种用于食用油中TAG的直接快速定性分析方法。采用2,5-二羟基苯甲酸(DHB)的丙酮溶液作为基质,二氯甲烷作为食用油的溶剂,在激光能量为15%、频率为100 Hz、辐照次数为100 Shots条件下可以获得重复稳定的信号(RSD9%)。利用一级质谱和二级质谱对食用油中TAG进行了初步的分类分析。在置信度为95%的条件下,采用主成分分析(PCA)方法可对34种食用油进行很好的分类。利用本方法可以直接识别出橄榄油中掺杂5%的菜籽油,表明本方法可以用于食用油样品的快速筛查分析。  相似文献   
74.
采用水热法以聚乙烯亚胺为原料一步制备氮掺杂荧光碳量子点。紫外-可见吸收光谱、荧光光谱以及透射电镜显示,所制备的碳点荧光性能优异、分散性好、且无团聚现象。在0.1mol/L PBS溶液中,荧光碳点的荧光强度随着Cu(Ⅱ)浓度的增加逐渐减弱。该方法对Cu(Ⅱ)检测的线性范围为50~150μmol/L,检出限为10μmol/L。细胞毒性测试结果表明,不同浓度的碳点对细胞活性影响均较小,其细胞毒性低。以上结果说明该碳点能成功检测Cu(Ⅱ)且细胞毒性低,在生物传感方面有潜在应用价值。  相似文献   
75.
片螺素D (LMD)及其衍生物的研究进展   总被引:1,自引:0,他引:1  
片螺素(Lamellarins)是一类从前腮亚纲软体动物中分离的具有较强生物活性的海洋吡咯生物碱, 迄今已发现40余种. 片螺素D (LMD)是片螺素系列化合物中生物活性最强的, 是继喜树碱(CPT)之后的一种新的拓扑异构酶1抑制剂, 对一系列癌细胞具有很强的细胞毒性, 并作用于细胞线粒体, 影响细胞周期, 诱导细胞凋亡. 结合作者的研究工作, 综述了LMD及其衍生物的最新研究进展, 重点介绍其化学合成(包括合成中心吡咯环和以吡咯环为中心的两大类合成方法), 并展望了该领域今后的发展趋势.  相似文献   
76.
利用可调谐真空紫外同步辐射和分子束实验装置在8.0~15.5 eV的光子能量范围内,研究2-甲基-2-内烯-1-醇的光电离解离.测出母体离子和碎片离子:C_4H_8O~+、C_4H_7O~+、C_3H_5O~+、C_4H_7~+、C_4H_6~+、C_4H_5~+、C_2H_4O~+、C_2H_3O~+、C_3H_6~+、C_3H_5~+、C_3H_3~+、CH_3O~+和CHO~+的光电离效率曲线,并获得母体分子的电离能和碎片离子的实验出现势.在B3LYP/6-31+G(d,p)理论水平上,计算光电离过程中母体分子、过渡态和中间体的稳定结构.采用CCSD(T)/cc-pVTZ耦合簇方法计算零点能,得到母体电离能和碎片离子的出现势.通过实验和理论研究,提出2-甲基-2-丙烯-1-醇的光解离路径,分子内氢转移是其中大部分解离途径中的主要过程.  相似文献   
77.
碳纳米材料(carbon nanomaterials, CNMs)是一类具有优异物理化学特性的新型材料. CNMs在广泛应用过程中不可避免地进入环境,对环境中的生物体造成一定危害.同时,环境中的CNMs在自然条件下可能会发生降解,而降解后的CNMs由于材料结构和性质上的改变进而影响其生物毒性.因此,亟需对CNMs环境降解途径系统地进行探究和总结.本综述围绕CNMs的生物降解和非生物降解这两种主要的降解方式展开.生物降解包括酶降解、细菌降解和细胞降解,非生物降解则重点阐述了光降解和(光)化学降解这两大过程.通过系统总结降解的反应条件、降解终点、中间产物和终产物等降解特性,最终揭示了CNMs环境降解的规律和机制.此外,我们结合尚未明了的降解机制和降解的环境限制条件对CNMs降解研究中面临的挑战和发展方向进行了展望.本综述为深入理解CNMs的环境归趋和长期环境风险提供了重要的理论支持.  相似文献   
78.
光谱预处理方法选择研究   总被引:1,自引:0,他引:1  
复杂样品光谱信号往往会受到杂散光、噪声、基线漂移等因素的干扰,从而影响最终的定性定量分析结果,因此通常需要在建模前对原始光谱进行预处理。目前已有的光谱预处理方法包括很多种,如何寻找合适的预处理方法是很棘手的问题。一种途径是观察光谱信号特点选择预处理方法(visual inspection),另一种途径是根据建模性能的优劣反过来选择预处理方法(trial-and-error strategy)。前者无需建模,更具有解释性,但是有时会由于选择者主观的因素导致错误的结果;后者无需观察光谱特点,但需要考察大量的预处理方法,对大数据集比较费时。因此需要探讨哪种选择方式更科学与合理。本研究采用9组数据,通过对10种预处理方法的120种排列组合来探讨预处理的必要性及预处理方法的选择。首先,优化偏最小二乘(PLS)的因子数及一阶导数、二阶导数、SG平滑的窗口参数,连续小波变换(CWT)的小波函数和分解尺度。然后把无预处理及一阶导数、二阶导数、CWT、多元散射校正(MSC)、标准正态变量(SNV)、SG平滑、中心化、Pareto尺度化、最大最小归一化、标准化10种预处理方法按照背景校正、散射校正、平滑和尺度化的顺序进行排列组合,得到120种预处理及其组合方法。最后对不同数据及相同数据的不同组分分别进行120种预处理,分析光谱信号特点及预处理后PLS建模的预测均方根误差值(RMSEP)。结果表明,相比观察光谱信号特点,根据光谱与预测组分的建模效果可以更为准确地选择最佳预处理方法。对于多数数据,采用合适的预处理方法可以提高建模效果;对于不同的数据集,因为其数据集信息和复杂性不同,所以其最佳预处理方法也不同;对于相同数据集,即使光谱相同,但不同组分的预处理方法也不相同。因此,不存在普适性的最佳预处理方法,最佳预处理方法除了与光谱有关,还与预测组分有关。通过对已有预处理方法按照预处理目的进行分类再排列组合是选择最佳预处理方法的一种有效途径。  相似文献   
79.
二苄基二硫醚(DBDS)与二苄基硫醚(DBS)是变压器内部主要腐蚀性硫化物,能腐蚀铜绕组,破坏变压器的安全运行.为从微观层面探究两者腐蚀性能的差异,基于密度泛函理论(DFT)对DBDS与DBS的腐蚀性能进行对比研究.计算了DBDS/Cu(110)吸附模型与DBS/Cu(110)吸附模型的功函变化,发现DBDS/Cu(110)的功函变化ΔΦ_1(-0.388 eV)绝对值要小于DBS/Cu(110)功函变化ΔΦ_2(-1.118 eV)绝对值,说明DBS更易吸附Cu(110)表面;DBDS在Cu(110)表面的吸附能E_(ads1)为8.571 eV,DBS在Cu(110)表面吸附能E_(ads2)为6.077 eV,表明两者都不能自发吸附,需要从外界吸热才能吸附,且DBS从外界获取能量更少,更容易吸附.同时比较了DBDS分子与DBS分子前线轨道分布以及HOMO轨道与LUMO轨道能量差,计算了DBDS分子与DBS分子的电负性,结果表明:DBDS电负性大小为3.132 eV,DBS电负性大小为3.100 eV,两者基本相等.而DBDS前线轨道能量差(2.610 eV)明显小于DBS前线轨道能量差(3.610 eV), DBDS优化前后的S-S键长分别为2.033?和3.057?,说明DBDS更容易与Cu发生反应.以上模拟结果说明,DBS更易吸附于Cu,而DBDS更易与Cu发生反应.  相似文献   
80.
为了从微观角度分析交联聚乙烯(XLPE)材料的电树枝老化,本文采用分子模拟方法计算并优化得到了XLPE分子结构.沿着聚乙烯链施加不同大小电场强度,分析交联聚乙烯分子的几何结构、偶极矩、极化率、电荷分布、前线轨道能量和红外光谱变化规律.计算结果表明,随着外电场的增大,交联聚乙烯分子红外光谱发生较大变化;当外施电场达到0.026a.u.后,红外光谱图中出现虚频,表明分子空间结构不再稳定,易发生断键;另外从前线轨道图的变化可以看出断键现象最先发生在交联聚乙烯链端部;沿着电场方向,原子所带电荷量由交联处向端部转移,当外施电场达到0.029a.u.后,链端部的C-H和C-C键断裂产生H·和CH_3·自由基.游离的自由基会形成空间电荷并发生积聚,产生局部较大场强,从而进一步影响交联聚乙烯链的空间结构.而电介质内部微观特性的变化必定会导致交联聚乙烯材料绝缘性能的下降,这些变化对揭示交联聚乙烯电缆电树枝形成的微观规律具有重要研究意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号