首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   99篇
  国内免费   64篇
化学   34篇
晶体学   2篇
综合类   1篇
数学   1篇
物理学   164篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   14篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   12篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   18篇
  2004年   11篇
  2003年   16篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   7篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
71.
给出了稀土离子电子态在高静水压下的某些特性,包括高压下的发光光 谱及能级特性,晶体场强度的压力效应,4f电子库仑排斥及自旋轨道耦合等作用随压力 的变化等。  相似文献   
72.
龙冉  李睿  熊宇杰 《化学通报》2015,78(7):580-589
本文概述了具有特定表/界面的无机复合结构纳米晶体的可控合成方法,阐述了合成过程中的关键控制参数。以笔者课题组近年来的进展为例,重点讨论了复合结构的设计对纳米催化剂表/界面状态和电子态的调控。纳米结构的表/界面状态和电子态调控赋予了催化剂在反应分子吸附与活化中的独特行为,从而获得了不同于单一组分催化剂的优异催化性能。  相似文献   
73.
金魁  吴颉 《物理学报》2021,(1):54-70
铜氧化物超导体和铁基高温超导体是已知的两类高温超导体,研究高温超导机理是如今超导领域最具有挑战性的前沿课题.构建高温超导的高维精确相图、寻找决定超导转变温度的关键物理量可以为高温超导机理做好实验铺垫.对于铜氧化物高温超导体,多种自由度的相互关联与耦合使其相图呈现出复杂性与多样性.现有的研究方法在构建高维“全息”相图及获取定量化物理规律等方面面临着难以克服的困难,而材料的高通量制备与表征技术可以在相图空间实现参量的线扫描甚至面扫描,有望快速建立可靠的高温超导高维相图和高温超导关键参量数据库,并从中提取重要的统计物理规律.本文从阳离子掺杂、母体氧掺杂、双电层晶体管(静电场/电化学)、磁场等几个调控维度,回顾了主要基于输运手段获得的铜氧化物电子态相图,介绍了基于脉冲激光沉积技术和分子束外延技术的组合薄膜生长方法以及与之匹配的跨尺度选区输运测量技术,展示了高通量技术在高温超导研究中的初步应用.高通量实验技术与超导研究结合,逐步形成了新兴的高通量超导研究范式,将在构建高维精确相图、突破高温超导机理、推进超导材料实用化等方面发挥不可替代的作用.  相似文献   
74.
本文采用基于密度泛函理论的第一性原理计算方法来研究不同维度ZnO的能带结构和电子态密度.参考实验上的ZnO晶格参数构建不同维度的ZnO模型并进行结构优化后再计算能带结构和电子态密度.研究结果表明二维和三维ZnO都属于直接带隙半导体且二维ZnO的禁带宽度大于三维ZnO;从三维变到二维,ZnO的电子局域化程度变高且Zn 3d轨道电子从能量较低的能级向能量较高的能级跃迁.本文的研究展示了二维和三维ZnO能带结构和电子态密度的异同,为二维ZnO基的器件研究提供了一定的理论参考价值.  相似文献   
75.
利用密度泛函理论系统研究了不同覆盖度下HF在3F、2F、1F与Al 终端的α-AlF3(0001)表面的吸附行为, 分析了HF与不同终端表面相互作用的电子机制. 计算结果表明: HF在3F终端的α-AlF3(0001)表面物理吸附; 在2F及1F终端表面化学吸附, 形成Al-F键和FHF结构, 使HF分子活化, 可以参加下一步的氟化反应; 在Al 终端表面解离吸附形成Al-F与Al-H键. 3F、2F、1F及Al 终端表面配位不饱和数目分别为0、1、2与3配位.不同覆盖度研究表明, 在2F终端表面上, 吸附一个HF分子使表面Al 配位达到饱和, 后续吸附的HF为物理吸附; 而在1F与Al 终端表面仍可化学吸附. 因此, 推测α-AlF3暴露不同终端表面中Al 原子配位不饱和数越高, 其对HF吸附与活化能力越强, 可能的氟化催化反应活性越高. 差分电荷密度与电子态密度分析表明, HF与3F终端α-AlF3(0001)表面发生弱相互作用, 而与2F、1F与Al 终端表面形成较强的电子相互作用.  相似文献   
76.
为了掌握Y原子掺杂在锐钛矿TiO2(101)表面的稳定吸附位置和电子结构变化,提高其表面光催化活性,本文利用基于密度泛函理论的第一性原理计算研究了Y原子掺杂在完美的、带有亚表层氧空位和带有表层氧空位的锐钛矿TiO2(101)表面的结构稳定性和电子性能。结构优化和电荷密度结果表明,Y原子可以稳定吸附在三种不同的表面上。在完美表面吸附时,Y原子最稳定的吸附位置是两个三配位O原子之间的空位;与完美表面类似,在带有亚表层氧空位表面吸附时,Y原子最稳定吸附位置是与氧空位邻近的两个三配位O原子之间的空位;而在带有表层氧空位表面吸附时,Y原子则停留于氧空位邻近的四配位Ti原子位置上最稳定。电荷密度计算结果也表明Y原子与这三种表面结合非常稳固。电子态密度计算结果表明,在带有表层氧空位的锐钛矿TiO2(101)表面引入Y原子会在费米面附近的带隙中引入缺陷态,带隙从1.67 eV降至1.44 eV,这有可能引起电子的分级跃迁,提高表面光催化能力。本文的研究为利用单原子Y掺杂提高TiO2(101)表面光催化能力提供了理论...  相似文献   
77.
采用光外差-磁旋转-速度调制吸收光谱技术, 在可见光波段范围16800~17573 cm-1, 对N2+的A 2Πu-X 2Σ+g(12,6)、(11,5)、(7,2)带和B 2Σ+u-X 2Σ+g (1,5)带进行了测量和分析,推导了双原子分子振转能级在受到微扰作用时的有效哈密顿量形式,并分析了N2+的A 2Πu-B 2Σ+u之间存在的微扰相互作用,通过与实验数据的拟合得到了精确的电子态微扰常数ξe、ηe .  相似文献   
78.
Using DFT method at B3LYP / 6-311G** level,the possible electronic states of RuH2 and RuN2 have been calculated,including the chemical adsorption and physical adsorption. For the RuH2 cluster,electronic states 3B2 and 5Σ- correspond to the physical adsorption. The RuN2 calculation results were also compared with the experimental values on ruthenium single crystal surfaces. It is found that the single states and the triplet states are in good agreement with the experimental values. For the C∞v symmetry,the calculated frequency of the quintuple state 5Σ- is slightly lower than the experimental value. For the C2v symmetry,the frequencies of the quintuple states are much lower than the experiment value and the 3B2 and 5A1 states are unstable.  相似文献   
79.
<正>复旦大学物理系吴施伟、刘韡韬课题组与龚新高的计算组合作,通过"折纸"方式,研究与天然结构截然不同的二硫化钼双层材料,实现了对二硫化钼能带结构、能谷、自旋电子态等物理特性的操控。相关研究成果8月31日在线发表于《自然—纳米技术》。以二硫化钼为典型的过渡金属二硫属化物是近年来国际上最受关注的二维量子功能材料之一。二硫化钼具有与单原子厚度的"神奇材料"石墨烯类似的二维层状结构,是一种层状的晶体矿物。深入理解其内在机制,对能带结构、能谷等物理特性进行量子操控,对凝聚态物理学与未来新型的电子学、  相似文献   
80.
为了进一步研究在近共振电子态和非共振电子态转动能量传递的跃迁几率,以一阶含时波恩近似、各向异性Lennard-Jones相互作用势和直线轨迹近似为基础,我们建立了 的碰撞诱导的电子态和转动态的能量传递模型,通过此模型我们得到了实验温度、转动量子数和折合质量对能量传递的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号