首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2778篇
  免费   573篇
  国内免费   1321篇
化学   2528篇
晶体学   10篇
力学   323篇
综合类   146篇
数学   293篇
物理学   1372篇
  2024年   9篇
  2023年   47篇
  2022年   47篇
  2021年   62篇
  2020年   56篇
  2019年   68篇
  2018年   43篇
  2017年   63篇
  2016年   57篇
  2015年   101篇
  2014年   199篇
  2013年   182篇
  2012年   140篇
  2011年   153篇
  2010年   170篇
  2009年   140篇
  2008年   456篇
  2007年   288篇
  2006年   238篇
  2005年   285篇
  2004年   302篇
  2003年   249篇
  2002年   212篇
  2001年   175篇
  2000年   118篇
  1999年   92篇
  1998年   93篇
  1997年   86篇
  1996年   101篇
  1995年   89篇
  1994年   70篇
  1993年   51篇
  1992年   47篇
  1991年   49篇
  1990年   44篇
  1989年   39篇
  1988年   12篇
  1987年   11篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1979年   3篇
  1951年   1篇
排序方式: 共有4672条查询结果,搜索用时 15 毫秒
61.
论文针对中密度聚乙烯材料(MDPE),采用平板试样进行了I型疲劳裂纹扩展和单次过载下裂纹扩展试验.发现与金属材料类似,单次拉伸过载对聚乙烯(PE)的疲劳裂纹扩展有明显的迟滞作用,降低了裂纹扩展速率.试验还通过变载荷刻线法获取疲劳裂纹扩展前缘的实际形貌和变化规律,对常规变载荷刻线方法进行了调整和验证,其修正方法对高分子材料的疲劳裂纹扩展前缘刻线具有较好的效果.通过观察发现含楔形塑性区的裂尖钝化是裂纹迟滞的主要原因.过载引入的塑性区内残余应力对裂纹迟滞也起了重要作用.论文利用Dugdale模型计算了塑性区尺寸,使用基于残余应力的Wheeler模型对过载迟滞进行了很好的拟合.  相似文献   
62.
为了研究内爆炸薄圆板的失效与作用载荷特性,在双圆筒装置内开展了铝质、钢质薄圆板内爆炸实验,分析了圆板破坏模式及比冲量载荷特性,并基于相同变形下载荷相等原理,得到了钢质圆板极限变形下的有效比冲量及作用时间,提出了该工况下圆板变形的预估模型。结果表明:在内爆炸载荷作用下,薄圆板的夹持边界和几何中心是应力集中区,产生了塑性大变形、拉伸撕裂、剪切断裂3种破坏模式;圆板的比冲量载荷由初始的波浪式增长逐渐转化为线性增长,30~80 g某温压装药使1 mm厚钢质圆板产生极限变形的有效比冲量作用时间在2.26~2.93 ms之间,经验证,圆钢板变形预估模型得到的装药质量与实验装药质量偏差小于13.3%。  相似文献   
63.
64.
中学物理教学中对“运动的独立性”与“力的独立作用原理”一直存在模糊认识,本文从物理学科结构的视角,深入分析了其实质内涵.同时,探讨了与之紧密相关的“平抛运动”教学的逻辑问题.最后指出了理清这些关系对教学的启示.  相似文献   
65.
《结构化学》2012,29(5)
以岷山红三叶(Trifolium pratense cv.Minshan)的茎、叶为供体植物,用蒸馏水浸泡48h制备水浸液。设0.05、0.10、0.15和0.20g·mL^-1 4个浓度梯度,以蒸馏水为对照,对燕麦(Avena sativa)、小白菜(Brassicachinensis)、披碱草(Elymus dahuricus)3种受体植物种子进行发芽试验和幼苗生长的生物测定。结果表明,不同浓度岷山红三叶茎叶水浸液对不同受体植物种子萌发和幼苗的生长发育有不同的化感效应。各浓度水浸液对种子萌发均没有显著影响(P〉0.05),但对小白菜幼苗的生长均有显著的抑制作用(P〈0.05);0.20g.mL-1浓度的水浸液对燕麦、披碱草和小白菜根生长抑制率分别为23.76%、35.73%和62.50%,且抑制作用显著;0.05g.mL-1浓度水浸液对披碱草幼芽的生长促进作用显著;在3种受体植物中,小白菜受到抑制作用较强,燕麦和披碱草则较弱。  相似文献   
66.
《物理》2014,(10)
<正>北京大学应用物理与技术研究中心(以下简称"中心")诚聘各界英才,职位包括助理教授、副教授、教授,以及博士后。中心关注高能量密度科学(物理)及相关科学计算,近期侧重以下一些研究领域:★非理想等离子体物质特性,特别是高能量密度条件下的温稠密物质特性★具有新奇性质的新型材料研究探索和计算设计  相似文献   
67.
在水热条件下,由联苯-2,4,4',6-四甲酸(H4bptc),4,4'-联吡啶(bipy),合成了3种锌配位聚合物[Zn(bptc)0.5]n (1),[Zn2(bptc)(H2O)3]n·nH2O (2),[Zn2(bptc)(H2O)(bipy)1.5]n·nH2O (3),用元素分析、红外光谱等方法对配合物的组成进行了表征,并通过单晶X-射线衍射方法测定了配合物的晶体结构.结果表明:配合物1具有双核结构,八元环金属簇Zn2(COO)22+自组装成具有(6,6)-连接拓扑结构;配合物2具有(4,5,6)-连接拓扑结构;配合物3在辅助配体的构筑下形成三维网络结构.用溴化乙锭荧光探针法测试了配合物对EB-DNA复合体系的荧光猝灭效应,实验结果显示配合物均能使EB-DNA复合体系的荧光发生不同程度的猝灭,由此推测配合物均与DNA发生了不同程度的插入作用,引入具有刚性平面辅助配体之后的配合物3,其作用力又强于不加辅助配体的配合物12.  相似文献   
68.
在室温和甲醇/水溶液为溶剂的条件下,以四溴代对苯二甲酸(H2TBTA)及1,3-二(4-吡啶基)丙烷(BPP)为配体合成了[Zn(TBTA)(BPP)]n(1)和[Cd(TBTA)(BPP)2(H2O)2]n(2)2个配位聚合物,对其进行了X-射线单晶衍射、元素分析、红外光谱分析和热重等性质表征。结果表明:配合物1为二维(2D)层状网络结构;配合物2为一维(1D)链状结构;H2TBTA配体中的羧基都采取单齿模式与金属离子配位;配合物中的氢键作用对其结构的稳定性起关键作用。  相似文献   
69.
由4-甲基-1,2,3-噻二唑-5-甲酸(HMTC,C4H4N2O2S)分别和1,3-双(4-吡啶基)-丙烷(bpp)、菲咯啉(phen)合成了2个锌配合物[Zn(MTC)2(bpp)]n1)和[Zn(MTC)(phen)(H2O)2](MTC)(2)。用元素分析、红外光谱、粉末X射线衍射、热重分析对配合物进行了表征,并通过单晶X射线衍射测定了配合物的晶体结构。结果表明:配合物1是二维网状结构,属于单斜晶系,P21/c空间群,中心金属锌(Ⅱ)离子的配位构型是扭曲的四面体结构。配合物2是二维层状结构,属于三斜晶系,P1空间群,中心金属锌(Ⅱ)离子的配位构型是变形的三角双锥结构。用溴化乙锭荧光探针法测定了配体和配合物对EB-DNA复合体系相互作用,实验结果显示无论配体还是配合物均能使EB-DNA复合体系发生不同程度的荧光猝灭,且配合物的作用强度远大于配体。  相似文献   
70.
合成了邻菲罗啉衍生物联吡啶[3,2-a:2',3'-c]-7-氮杂-吩嗪(dpapz)及其铜(I)配合物[Cu(dpapz)2]PF6, 利用核磁共振氢谱(1H NMR), 傅里叶变换红外(FTIR)光谱, 高分辨质谱(HR ESI-MS)等对合成的化合物进行了表征.采用紫外-可见吸收光谱,荧光光谱, DNA熔解温度实验和循环伏安方法研究了dpapz和[Cu(dpapz)2]PF6与小牛胸腺DNA(CT DNA)的相互作用. 配体dpapz与小牛胸腺DNA(CT DNA)作用时未观察到吸收峰红移并且减色效应较小(<30%), 且DNA熔解温度也上升较小(ΔTm=7.8 ℃), 说明dpapz以沟槽结合的方式与CT DNA相互作用. 而[Cu(dpapz)2]PF6与CT DNA作用时, 可观测到较小的吸收峰红移(2-3 nm)和较大的减色效应(>50%), 同时DNA熔解温度上升较大(ΔTm=11.1 ℃), 表明[Cu(dpapz)2]PF6以静电相互作用和部分扦插的方式与DNA结合. 溴乙锭(EB)荧光竞争实验和循环伏安实验进一步证实了这一结论. 配体dpapz和[Cu(dpapz)2]PF6与DNA的结合常数分别为2.88×105和5.32×105 mol·L-1. 光照条件下, [Cu(dpapz)2]PF6产生单重态氧的能力与dpapz相当, 但产生超氧负离子自由基的能力要弱于dpapz. 活性氧猝灭实验表明, 超氧负离子自由基、单重态氧和羟基自由基均参与了dpapz和[Cu(dpapz)2]PF6对DNA的光损伤作用. [Cu(dpapz)2]PF6对DNA的亲和性要高于对dpapz的, 使得[Cu(dpapz)2]PF6对质粒DNA的光损伤效率明显强于dpapz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号