首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   54篇
化学   69篇
数学   1篇
物理学   3篇
  2013年   5篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   11篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
51.
MoO3/La2O3催化剂上的甲烷选择性氧化制甲醇   总被引:3,自引:0,他引:3  
张益群  张沛  马建新 《催化学报》1997,18(5):425-427
  相似文献   
52.
聚乙烯醇/聚乙烯吡咯烷酮碱性复合膜的制备及其性能   总被引:1,自引:0,他引:1  
通过在不同浓度KOH溶液中进行掺杂,制备出了聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)碱性聚合物电解质膜.详尽考察了膜的组成、微观结构、热稳定性、离子电导率和甲醇吸收率.结果表明,PVA与PVP两者具有较好的相容性,当m(PVA)∶m(PVP)=1∶0.5时,膜断面致密、均匀,未发生大尺度相分离.PVP的混入可以极大提高复合膜的电导率和热稳定性.当m(PVA)∶m(PVP)=1∶1时,复合膜的电导率可达2.01×10-3 S.cm-1.PVA/PVP/KOH膜的甲醇吸收率随温度的升高没有明显变化,100℃时其甲醇吸收率仅为同条件下Nafion 115膜的1/4.这表明该复合膜有望作为一种新型的碱性直接甲醇燃料电池用固体电解质膜且可提高膜的使用温度.  相似文献   
53.
新型大颗粒离子交换树脂的表征和催化活性   总被引:1,自引:0,他引:1  
用红外、核磁及热分析技术表征由溶胶-凝胶法制备、具有离子交换性能的大颗粒树脂催化剂,证实了树脂催化剂由含苯基及含硅的化合物构成,热稳定性高于商品离子交换树脂近100℃。对该树脂催化剂进行磺化反应的最佳条件为:温度,25℃;浓度,氯磺酸:三氯甲烷-1:4(Vo1);时间,12h。其缩醛化反应的催化活性与商品大孔离子交换树脂相当。  相似文献   
54.
赵健  周伟  马建新 《催化学报》2013,34(10):1826-1832
采用过量浸渍法制备了Ni-Co/La2O3-γ-Al2O3双金属催化剂, 并使用固定床石英反应器在850℃,0.1MPa和空速为6000mL gcat-1 h-1的条件下考察了预处理对催化剂性能的影响. 运用X射线衍射、热重-差示扫描量热、透射电子显微镜、扫描电镜和X射线能谱分析等手段对催化剂进行了表征. 结果表明,与传统氢气还原预处理相比,经氢气和二氧化碳预处理后, 催化剂性能明显提高,且能基本消除该催化剂上沼气重整反应的诱导期. 511 h的稳定性实验结果表明,催化剂经氢气和二氧化碳预处理后具有很好的稳定性和抗积碳性,平均积碳速率仅为0.2 mg gcat-1 h-1. 表征结果显示,经氢气和二氧化碳预处理后,催化剂具有更好的抗烧结和抗积碳性能,反应后金属颗粒较小,分布较均匀,粒径分布范围较窄,从而增强了催化剂的稳定性.  相似文献   
55.
采用两步化学还原法制备了Co@Pt/C电催化剂, 并在还原气氛下对催化剂进行热处理. 通过高分辨透射电镜(HR-TEM)和X射线光电子能谱(XPS)等技术对催化剂的微观结构和形貌进行表征. 结果表明: 形成的Co@Pt/C催化剂具有核壳结构, 金属纳米颗粒均匀负载于碳上, 其粒径分布范围较窄; 热处理对催化剂的结构和形貌有较大影响. 利用循环伏安(CV)法和线性伏安扫描(LSV)法表征催化剂的电化学活性、氧还原反应(ORR)动力学特性及耐久性. 制备的Co@Pt/C催化剂在电解质溶液中表现出良好的电化学性能, 核壳结构的形成有助于提高Pt 的利用率. 动力学性能测试表明催化剂的ORR反应以四电子路线进行. 相比于合金催化剂,核壳结构催化剂的耐久性和稳定性有很大程度的改善.  相似文献   
56.
<正>The transmission characteristics of the optical label switching system based on the FSK/ASK orthogonal modulation format is investigated.The factors that affect the transmission performance,such as the FSK tone space,dispersion compensation and coupler split ratio,are studied by numerical simulation.The proposed scheme is also experimentally demonstrated with a transmission of 155 Mbit/s FSK label combined with 10 Gbit/s ASK payload.  相似文献   
57.
研究了一种新型的羰基硫水解催化剂--稀土氧硫化物.考察了稀土系列氧化物硫化后的水解活性,发现其活性顺序为La≈Pr≈Nd≈Sm>Eu>Ce>Gd≈Ho>Dy>Er.XRD物相分析表明,各种稀土氧化物经水合及硫化后呈现出不同的物相变化特性,稀土氧硫化物是COS水解的活性物质.在氧硫化镧和氧硫化钕催化剂上研究了O2和SO2对羰基硫水解反应的影响,与传统的氧化铝基和氧化钛基水解催化剂相比,稀土氧硫化物显示出良好的抗氧化性能,而SO2对催化活性的影响是可逆的.  相似文献   
58.
用蒸发法制备了Ni/Al2O3催化剂及浸渍法制备了Ni/α-Al2O3和Ni/γ-Al2O3催化剂, 并与商品天然气水蒸气重整催化剂Z118Y一起进行了甲烷干重整实验, 考察了各催化剂上表面积炭行为. 通过H2程序升温还原(H2-TPR)、BET(Brunauer-Emmett-Teller)比表面积分析、X射线衍射(XRD)、透射电镜(TEM)、热重-差式扫描量热(TG-DSC)、程序升温氢化(TPH)等表征手段对催化剂表面沉积炭的特性进行了表征. 结果表明, 各催化剂上至少存在三种形式的碳物种: 无定形碳、丝状碳及石墨碳. 由于载体性质不同, 各催化剂上沉积炭的种类及其含量有所差别. Z118Y、Ni/Al2O3及Ni/α-Al2O3催化剂上主要沉积丝状炭, 而Ni/γ-Al2O3催化剂上则主要是石墨碳. Ni/γ-Al2O3催化剂中金属Ni颗粒较小(小于15 nm)、粒径分布范围较窄、分散性较好, 能减少催化剂表面炭的沉积, 有效地抑制丝状碳的生长.  相似文献   
59.
傅婧  乔锦丽  马建新 《物理化学学报》2010,26(11):2975-2981
碱性固体电解质膜的稳定性是影响其在电化学领域应用的一个重要因素.本文在前期研究工作的基础上,通过直接共混和化学交联修饰制备出了聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)碱性聚合物电解质膜.采用傅里叶变换红外(FTIR)光谱、热重分析(TGA)、扫描电镜(SEM)和交流阻抗等方法详细考察了复合膜的分子结构、热稳定性、化学稳定性、氧化稳定性和尺寸稳定性.红外光谱结果表明,PVP成功地混入聚合物基体中,在1672cm-1处表现出来自于PVP第I带C襒O的强吸收峰.TGA结果表明,提高掺杂的KOH溶液浓度对PVA/PVP碱性膜的热稳定性没有明显影响.SEM分析结果表明,复合膜经高温、高浓度碱(80℃,10mol·L-1)处理后,其断面结构仍致密均匀,未出现类似小孔等膜降解情况,此时膜电导率(1.58×10-3S·cm-1)相比室温相同碱液时提高91.5%,表明PVA/PVP膜具有很好的耐碱化学稳定性.同时,PVA/PVP碱性膜表现出良好的抗氧化性,在60℃的3%和10%H2O2溶液中处理均没有观察到明显的质量损失,150h后仍能保持原膜质量的89%和85%.此外,由于膜内形成致密的内互交联网络结构,复合膜在水中800h之后也表现出很好的同向性和电导率稳定性.  相似文献   
60.
Ni/La_2O_3/Al_2O_3催化剂上甲烷干重整积炭表征与分析(英文)   总被引:3,自引:0,他引:3  
用传统的等体积浸渍法或蒸发法制备了Ni/La_2O_3/γ-Al_2O_3与Ni/La_2O_3/α-Al_2O_3催化剂,在没有稀释气体的条件下进行了甲烷干重整反应.采用H_2程序升温还原、N_2吸附脱附、X射线衍射、透射电子显微镜、热重-差示扫描热量以及程序升温加氢等手段对新鲜的与反应后的催化剂以及沉积的碳进行了表征.结果表明,催化剂上有四种含碳物种,以三种形态存在,即无定形碳(聚合态)、丝状碳或石墨碳.这些催化剂上积炭的数量与种类各不相同,依赖于催化剂中金属Ni颗粒的大小与载体的织构特性.丝状碳的形成及其形貌与金属Ni颗粒的大小有着密切的联系.Ni颗粒小于15nm时能抑制丝状碳的形成与沉积.减少积炭的数量,同时能产生较多的活性C_a物种,从而在一定程度上导致催化剂具有较好的活性与稳定性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号