首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   2篇
  国内免费   15篇
化学   100篇
数学   8篇
物理学   25篇
  2023年   5篇
  2022年   6篇
  2021年   3篇
  2020年   8篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有133条查询结果,搜索用时 46 毫秒
51.
《中国化学快报》2021,32(9):2637-2647
In recent years, lanthanum-based nanomaterials (La-NMs) are selected as an efficient nano-adsorbent for phosphate removal because La3+ has a strong affinity with oxygen-donor atoms from phosphate. Additionally, there are a broad interest and literature base for the effect of different synthesis optimization and environmental parameters on the adsorption performance of La-NMs. A considerable amount of research has also investigated the regeneration and application of La-NMs to real wastewater in a laboratory scale. Based on the literature survey, it was found that La-NMs are often produced via co-precipitation and hydrothermal methods. Moreover, phosphate's adsorption process and behavior onto La-NMs are described well with the pseudo-second-order model and Langmuir model. The interaction mechanism between phosphate and La-NMs are dominated by ligand exchange, surface complexation and electrostatic attraction. Furthermore, phosphate could easily desorb from La-NMs due to the weak H-bonding interaction between phosphate and the H-bond acceptor groups on the surface of La-NMs. Despite the wealth of literature available in this area, there is a lack of systematic review to evaluate the gaps in the use of La-NMs to eliminate phosphate in water. In this review, we mainly summarize and discuss the role and the effect of the synthesis techniques on the physicochemical properties and the adsorption behavior of La-NMs. The possible adsorption mechanism, regeneration efficiency, and the application of La-NMs to the real environmental samples are also presented and highlighted.  相似文献   
52.
陶芙蓉 《分子催化》2013,(5):420-428
探讨了离子液体1-(4-磺酸基丁基)-3-甲基咪唑的硫酸氢盐(IL-1)作为催化剂,金属氯化物作为助催化剂时纤维素的水解,利用离子液体IL-1对杨木锯末中纤维素的直接溶解并再生,考察了温度、碱性溶液的浓度以及溶解时间对溶解率的影响,通过傅里叶红外光谱FT-IR、X-射线衍射仪及热失重对处理前后锯末、再生纤维素的结构、结晶性及热性能进行了研究.结果表明,温度为90℃,NaOH质量分数为6%,溶解时间为2 h时,离子液体对杨木锯末具有最佳的溶解性,溶解率可达45%左右.离子液体主要溶解杨木锯末中的纤维素,且为非衍生化的直接溶解,再生后的纤维素结晶形态由纤维素I变为II,热稳定性能有所降低.  相似文献   
53.
Conductive polymers have found extensive application in fuel cells, sensors and more recently as scaffolds for tissue and organ regeneration. Scaffolds that can transmit electrical impulses have been shown to be beneficial in regeneration of tissues like muscle and nerve that are electroactive in nature. Most cellular events and cell functions are regulated by ion movement, and their imbalance is the cause of several diseases. We report synthesis and characterization of sulfonated polymers of poly(methyl vinyl ether‐alt‐maleic anhydride) (PMVEMA), poly(ether ether ketone) (PEEK), poly(ether sulfone) (PES) and poly(phenylene oxide) (PPO) and evaluate their potential for tissue regeneration. The ionic conductive property stems from the presence of sulfonic groups on the polymer backbone. The structure of the polymer was confirmed using Fourier Transform Infrared Spectroscopy and membrane hydrophicity was determined by water contact angle measurement. The electrical conductivity of these sulfonated membranes was found to be 53.55, 35.39 and 29.51 mS/cm for SPPO, SPEEK and SPMVEMA, respectively. The conductivity was directly proportional to the sulfonic acid content on the polymer backbone. The ionic membranes namely SPPO, SPEEK and SPMVEMA demonstrated superior cell adhesion properties (~7–10 fold higher) than cells seeded onto tissue culture polystyrene. The sulfonated membranes exhibited static water contact angle in the range of 70–76°. The membranes supported the proliferation of human skin fibroblasts over 14 days in culture as evidenced by confocal and electron microscopy imaging. The ionic materials reported in this study may serve as scaffolds for a variety of tissue healing and drug delivery applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
54.
Electrodes of multiwall carbon nanotube (MWCNT) with polytetrafluoroethylene (PTFE) binding were prepared for NaCl removal from water in the electrosorption system. SEM, XRD and BET analysis were used to characterize the prepared electrodes. The optimum electrosorption parameters (electrosorption temperature, NaCl concentration, electrosorption time, and potential) were studied. The maximum electrosorption capacity (15.64 mg/g) was obtained at −1.0 V, 100 min, and 30 °C. The electrosorption capacity of electrodes decreased from 15.64 mg/g to 6.15 mg/g with the temperature rise from 30 to 50 °C. Also, the kinetics of electrosorption NaCl by Electrodes was investigated by pseudo-first-order and pseudo-second-order. The results indicated that the electrosorption data will fit with the pseudo-first-order model indicating the physio-electrosorption of NaCl by Electrodes with activation energy was 19.45 kJ mol−1. The regeneration result indicated the exceptional and stable reusability of MWCNT/PTFE in the NaCl electrosorption system.  相似文献   
55.
为实现固体除湿系统吸附材料的低温再生及提高吸附材料的除湿效率,制备了新型复合固体除湿材料。新型复合固体除湿材料是以陶瓷纤维为基质,运用MgCl2浸渍改性硅胶及CaCl2二次强化方法而形成的复合物,复合固体除湿材料中MgCl2和CaCl2浓度均为25%。通过恒温恒湿空调室实验研究温度、风速、湿度对MgCl2/CaCl2改性复合材料除湿性能及再生特性。实验表明:在温度20℃、湿度70%条件下,复合固体除湿材料除湿量可达161 mg/g,是未改性除湿材料的3.2倍,是单一改性除湿材料的1.3倍;当系统平衡时,其除湿速率分别是未改性除湿材料的6.1倍,是单一改性除湿材料的2.6倍。除湿材料的平衡吸附量和吸附速率均与相对湿度成正比,与温度成反比;且风速在0.5 m/s条件时具有最大的除湿量。同时,在约70℃较低的脱附温度,8 min可脱附≥90%的总吸附水量,每1 g吸附剂可脱附水量高达145 mg;脱附再生6次后,除湿量依然较高为138 mg/g,且基本不再变化。  相似文献   
56.
Asymmetric reduction of ketone by a microalga, Synechocystis sp. PCC 6803, smoothly afforded to the corresponding (S)-alcohol in excellent enantiomeric excess by the aid of illumination of orange and red LED lights which are more effective than other LEDs such as blue and green lights. The condition under minimum energy flux (1.0 W/m2) of orange-red LEDs is enough for the reduction of ketone, and it seems that orange-red light rather effectively forwarded the regeneration of coenzyme.  相似文献   
57.
In this study catalytic and thermal cracking of polyethylene waste were investigated in continued tube reactor system. HZSM-5 and equilibrium FCC type catalysts were tested. Both the resistance to deactivation and the regeneration process of the catalyst were studied. Reaction temperature of 545 °C and residence time of 20 min were used during the cracking treatment. The reaction products were analyzed and the textural properties of catalysts were also determined. It was found that after the first reaction run the FCC catalyst lost 75% of its cracking activity, in case of HZSM-5 the rate of deactivation was higher. The cracking activity of catalyst could be improved by regeneration process with only 2-3% compared to the coked catalyst. The isomerisation effect of the catalysts was also observed. The effect of coked FCC catalyst could be improved by the regeneration process with 50% in case of HZSM-5 it was only 25%.  相似文献   
58.
The precipitation in aqueous media of cellulose from solutions in N-methylmorpholine N-oxide (NMMO) hydrates is an important stage in the process of manufacturing of fibres, films and other cellulose objects. It is responsible for the formation of the structure of the regenerated object and their morphological characteristics significantly influence the properties of the final products. Regeneration of rather large cellulose objects was observed in situ by optical microscopy. It was found that all regenerated objects present an asymmetric structure composed of a dense skin surrounding a sub-layer characterised by the presence of finger-like voids. The porous texture of the cellulose parts between these voids is typical of the one obtained by spinodal decomposition. The morphologies of regenerated cellulose samples are described as a function of various parameters, initial cellulose solutions and composition and temperature of the aqueous regeneration bath. A mechanism of the structure formation during regeneration is proposed. P. Navard is a Member of the European Polysaccharide Network of Excellence (EPNOE), .  相似文献   
59.
We prove Berry–Esseen type rates of convergence for central limit theorems (CLTs) of regenerative processes which generalize previous results of Bolthausen under weaker moment assumptions. We then show how this general result can be applied to obtain rates of convergence for (1) CLTs for additive functionals of positive recurrent Markov chains under certain conditions on the strong mixing coefficients, and (2) annealed CLTs for certain ballistic random walks in random environments.  相似文献   
60.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号