首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10326篇
  免费   640篇
  国内免费   1091篇
化学   8882篇
晶体学   163篇
力学   102篇
综合类   51篇
数学   1112篇
物理学   1747篇
  2023年   72篇
  2022年   110篇
  2021年   173篇
  2020年   173篇
  2019年   535篇
  2018年   265篇
  2017年   505篇
  2016年   300篇
  2015年   315篇
  2014年   346篇
  2013年   674篇
  2012年   590篇
  2011年   672篇
  2010年   473篇
  2009年   703篇
  2008年   759篇
  2007年   681篇
  2006年   646篇
  2005年   541篇
  2004年   565篇
  2003年   482篇
  2002年   452篇
  2001年   239篇
  2000年   210篇
  1999年   142篇
  1998年   128篇
  1997年   167篇
  1996年   159篇
  1995年   169篇
  1994年   140篇
  1993年   117篇
  1992年   123篇
  1991年   71篇
  1990年   58篇
  1989年   36篇
  1988年   44篇
  1987年   34篇
  1986年   21篇
  1985年   19篇
  1984年   28篇
  1983年   6篇
  1982年   13篇
  1981年   21篇
  1980年   16篇
  1979年   18篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1974年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Processing of Carapa guianensis seeds to obtain oil on an industrial scale generates a significant amount of by-product, approximately 66% w/w, which is called cake and is a potential source of biomolecules, including simple phenolic structures. For this reason, studies were carried out on the chemical profiles of hydrolyzed extract from this agro-industrial by-product through High Performance Thin-Layer Chromatography (HPTLC) and Gas Chromatography coupled to Mass Spectrometry (GC–MS). These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product. The sample antioxidant capacity was determined by methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH)and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radicals direct sequestration. The hydrolyzed fraction showed a total of 63.47% in the relative abundance of the total of compounds, standing out: p-hydroxybenzoic acid (39.19%) and protocatechuic acid (3,4-dihydroxybenzoic acid) (5.62%), both from hydroxybenzoic acids and 3-(3,4-dihydroxyphenyl)lactic acid, (7.76%) hydroxycinnamic acids derivatives. In these results, the fraction rich in simple phenolic acids was obtained, attributing the prominent behavior of this matrix antioxidant activity, expressed by (IC50: of 16.42 µg/mL and 6.52 µg/mL for DPPH and ABTS+ radicals, respectively). The research demonstrated an alternative to applicability that involves sustainability from agro-industrial. These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product, generating a process capable of converting biomass into a bioproduct, consisting of bioactive compounds, in addition to adding value to the industrial chain.  相似文献   
32.
Eu2+-, Mn2+- and Eu2+−Mn2+-doped CaMgSi2O6 phosphors have been prepared by a high-temperature solid-state reaction. Systematic investigation of the concentration- and temperature-dependent luminescence of Mn2+ showed that Mn2+ ions occupy two distinct sites in CaMgSi2O6. Electron–vibration interaction (EVI) analyses of Mn2+ ions revealed Huang–Rhys factors of 4.73 and 2.82 as well as effective phonon energies of 313 and 383 cm−1 for the two sites. Eu2+−Mn2+ energy transfer is also discussed, and its efficiency is estimated by lifetime and luminescence spectra. The different thermal quenching behaviours of Eu2+ and Mn2+, the distinct emission colours of Eu2+ (blue, band peak at ∼451 nm) and Mn2+ (yellow–red range, band peaks at ∼583 and 693 nm) endow the co-doped samples with potential applications in luminescence thermometry and temperature-/excitation wavelength-responsive dual anti-counterfeiting.  相似文献   
33.
In this study, a hydrostable Z-scheme Ag/CsPbBr3/Bi2WO6 photocatalyst was designed and fabricated for the degradation of Rhodamine B (RhB). The structural instability of CsPbX3 perovskites in water is one of the main obstacles that restrict their practical application in photocatalytic wastewater treatment. The photocatalyst was prepared in three steps: passivation of CsPbBr3 nanocrystals (NCs) with 3-mercaptopropionic acid (MPA), construction of a heterojunction between MPA-passivated CsPbBr3 NCs and Bi2WO6 ultrathin nanosheets, and doping Ag nanoparticles as charge mediators in the heterojunction. The as-obtained 5%Ag/20%CsPbBr3/Bi2WO6 exhibits good stability and excellent photocatalytic activity. The degradation rate is 93.9% in 120 min, which is 4.41 times than that of Bi2WO6.  相似文献   
34.
《印度化学会志》2023,100(3):100934
Investigation upon the solid–liquid equilibrium on solubility data of 6-propyl-2-thiouracil (PLT) in pure organic solvents is essential for separation and purifying in industry process. In this work, PLT solubility in nine neat solvents was experimentally determined at 278.15 K–323.15 K under P = 0.1 MPa. These selected solvents were tetrahydrofuran(THF), acetone, acetonitrile,1-butanol,1-pentanol, 2-butanol, methyl acetate, ethyl acetate,1-propyl acetate, respectively. Experiment results showed that solubility was consistent with temperature and decreased according to the order: THF > acetone>1-butanol≈1-pentanol> 2-butanol > methyl acetate > ethyl acetate>1-propyl acetate > acetonitrile. Solvent effect and Hansen solubility parameter (HSP) were incited to explain dissolution rule on solute. Four thermodynamic models (modi?ed Apelblat model, Van't model, λh model and NRTL model) were adopted to correlate PLT solubility and provide good correlations on basis of RD, ARD and RMSD. In addition, thermodynamic properties (ΔH°, ΔS° and ΔG°) of PLT dissolution process in pure solvents were discussed and proved to be endothermic, entropically driven and non-spontaneous process.  相似文献   
35.
In view of the continuously worsening environmental problems, fossil fuels will not be able to support the development of human life in the future. Hence, it is of great importance to work on the efficient utilization of cleaner energy resources. In this case, cheap, reliable, and eco-friendly grid-scale energy storage systems can play a key role in optimizing our energy usage. When compared with lithium-ion and lead-acid batteries, the excellent safety, environmental benignity, and low toxicity of aqueous Zn-based batteries make them competitive in the context of large-scale energy storage. Among the various Zn-based batteries, due to a high open-circuit voltage and excellent rate performance, Zn-Ni batteries have great potential in practical applications. Nevertheless, the intrinsic obstacles associated with the use of Zn anodes in alkaline electrolytes, such as dendrite, shape change, passivation, and corrosion, limit their commercial application. Hence, we have focused our current efforts on inhibiting the corrosion and dissolution of Zn species. Based on a previous study from our research group, the failure of the Zn-Ni battery was caused by the shape change of the Zn anode, which stemmed from the dissolution of Zn and uneven current distribution on the anode. Therefore, for the current study, we selected K3[Fe(CN)6] as an electrolyte additive that would help minimize the corrosion and dissolution of the Zn anode. In the alkaline electrolyte, [Fe(CN)6]3– was reduced to [Fe(CN)6]4– by the metallic Zn present in the Zn-Ni battery. Owing to its low solubility in the electrolyte, K4[Fe(CN)6] adhered to the active Zn anode, thereby inhibiting the aggregation and corrosion of Zn. Ultimately, the shape change of the anode was effectively eliminated, which improved the cycling life of the Zn-Ni battery by more than three times (i.e., from 124 cycles to more than 423 cycles). As for capacity retention, the Zn-Ni battery with the pristine electrolyte only exhibited 40% capacity retention after 85 cycles, while the Zn-Ni battery with the modified electrolyte (i.e., containing K3[Fe(CN)6]) showed 72% capacity retention. Moreover, unlike conventional organic additives that increase electrode polarization, the addition of K3[Fe(CN)6] not only significantly reduced the charge-transfer resistance in a simplified three-electrode system, but also improved the discharge capacity and rate performance of the Zn-Ni battery. Importantly, considering that this strategy was easy to achieve and minimized additional costs, K3[Fe(CN)6], as an electrolyte additive with almost no negative effect, has tremendous potential in commercial Zn-Ni batteries.  相似文献   
36.
采用熔融酯交换和缩聚两步法,合成了以1,4-丁二醇、4,8-三环[5.2.1.0(2,6)]癸烷二甲醇和碳酸二苯酯为原料的聚(碳酸丁二醇酯-co-三环癸烷二甲醇碳酸酯)(PBTCx, x为进料中TCD占二元醇总量的百分比)。用1H NMR和13C NMR对PBTCs的微观结构和组成进行了表征。采用GPC、 DSC、 XRD、 TG对PBTCs的分子量、玻璃化转变温度(Tg)、热稳定性等进行了研究。结果表明,PBTCs的Mw为10500~124800 g?mol-1, Mn为6300~73000 g?mol-1, PDI为1.59~1.73; PBTCs呈无定形态、Tg为-3.43 ℃~70.90 ℃, PBTCs表现出比PBC更高的热稳定性。薄膜拉伸试验结果表明,PBTC30(拉伸强度为33.54 MPa,断裂伸长率为275.69%)和PBTC40(拉伸强度为32.13 MPa,断裂伸长率为294.63%)具有较高的强度和韧性,在薄膜材料中具有一定的应用潜力。  相似文献   
37.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
38.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   
39.
N6-methyladenosine (m6A) on RNAs plays an important role in regulating various biological processes and CRIPSR technology has been employed for programmable m6A editing. However, the bulky size of CRISPR protein and constitutively expressed CRISPR/RNA editing enzymes can interfere with the native function of target RNAs and cells. Herein, we reported a conditional m6A editing platform (FKBP*-dCas13b-ALK) based on a ligand stabilized dCas13 editor. The inducible expression of this m6A editing system was achieved by adding or removing the Shield-1 molecule. We further demonstrated that the targeted recruitment of dCas13b-m6A eraser fusion protein and site-specific m6A erasing were achieved under the control of Shield-1. Moreover, the release and degradation of dCas13b fusion protein occurred faster than the restoration of m6A on the target RNAs after Shield-1 removal, which provides an ideal opportunity to study the m6A function with minimal steric interference from bulky dCas13b fusion protein.  相似文献   
40.
Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium-ion batteries. In the present study, integrated modification of migration channels broadening, charge density re-distribution, and oxygen vacancies regulation are realized in case of Nb-doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low-temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X-ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号