首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   21篇
  国内免费   13篇
化学   459篇
晶体学   1篇
力学   3篇
综合类   13篇
数学   1篇
物理学   35篇
  2023年   10篇
  2022年   22篇
  2021年   69篇
  2020年   36篇
  2019年   23篇
  2018年   23篇
  2017年   13篇
  2016年   18篇
  2015年   20篇
  2014年   18篇
  2013年   17篇
  2012年   23篇
  2011年   21篇
  2010年   15篇
  2009年   19篇
  2008年   20篇
  2007年   26篇
  2006年   11篇
  2005年   13篇
  2004年   21篇
  2003年   16篇
  2002年   4篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1981年   2篇
  1979年   2篇
排序方式: 共有512条查询结果,搜索用时 540 毫秒
21.
A comparative study between methanolic extract and n-hexane fraction of Typha domingensis (Typhaceae) was conducted for the evaluation of phytochemical potential, in vitro biological activities, and in-silico molecular docking studies. The phytochemical composition was estimated by total phenolic and total flavonoid contents, and by GC–MS analysis. Several biological activities were performed such as antioxidant assays (ABTS, FRAP, DPPH, & CUPRAC), enzyme inhibition activity (Tyrosinase, Acetylcholinesterase & Butyrylcholinesterase), thrombolytic activity, and antimicrobial activity (antibacterial & antiviral) to evaluate the medicinal importance of Typha domingensis. The results of the comparative study showed that methanolic extract has more total phenolic and total flavonoid contents (95.72 ± 5.76 mg GAE/g, 131.66 ± 7.92 mg QE/g, respectively) as compared to n-hexane fraction which confirms its maximum antioxidant potential (ABTS 114.31 ± 8.17, FRAP 116.84 ± 3.01, DPPH 283.54 ± 7.3 & CUPRAC 284.16 ± 6.5 mg TE/g). In the case of in vitro enzyme inhibition study and thrombolytic activity, better results were observed for methanolic extract. Almost similar antimicrobial patterns were observed for both methanolic extract and n-hexane fraction of Typha domingensis. The major bioactive phytochemicals identified by GC–MS were further analyzed for in-silico molecular docking studies to determine the binding affinity between ligands and the enzymes. The docking study indicated that most of the bioactive compounds showed a better binding affinity with enzymes as compared to the standard compounds (kojic acid & galantamine). The results of this study recommended that Typha domingensis has promising pharmaceutical importance and it should be further analyzed for the isolation of bioactive phytochemicals which may be useful for the treatment of several diseases.  相似文献   
22.
Datura metel L. is an important medicinal plant of Solanaceae family which has extensive pharmacological properties. The present investigation was aimed to identify the presence of phytoconstituents and assess in vitro antibacterial, anti-biofilm, anti-diabetic, anti-inflammatory, antioxidant, cytotoxicity, and wound healing efficacy of D. metel leaves extract. Among different solvent extracts, methanolic extract showed higher amount of phenolic (124.61 ± 0.68 mg GAE/g), alkaloid (88.77 ± 1.01 mg AE/g), flavonoids (42.24 ± 0.18 mg QE/g), and tannins contents (38.72 ± 0.51 mg GAE/g). The extract exhibited not only significantly (P < 0.05) different antibacterial activities against pathogens tested but also showed maximum biofilm inhibition of 94, 88, and 92% against B. subtilis, MRSA, and E. coli, respectively. Anti-diabetic assay depicted 22.55 ± 0.62–79.41 ± 1.13% and 24.31 ± 1.47–72.59 ± 0.22% of α-amylase and α-glucosidase inhibition abilities of methanolic extract, respectively at varied concentrations. The methanolic extract showed potential anti-inflammatory effect (P < 0.05) by showing 28.11 ± 0.13, 34.94 ± 1.11, 55.73 ± 0.42, 73.28 ± 0.72, and 92.62 ± 1.33% of inhibition of protein denaturation at different concentrations with an IC50 value of 52.45 µg/mL. The extract revealed significant (P < 0.05) rate of ABTS scavenging, DPPH degradation, and reducing power assay in a concentration dependent manner. The cytotoxicity assay was demonstrated on L929 mouse fibroblast cell line and found > 90% of cell viability in the presence of methanolic extract, thereby indicating its non-toxicity effect. Wound healing assay indicated that methanolic extract at 50 µg/mL closed 100% of wound gap after 24 h with high rate of migration and proliferation. Furthermore, GC–MS chromatogram revealed the presence of several components in methanolic extract, including neophytadiene, hexadecanoic acid, and hentriacontane as principal phytoconstituents. In conclusion, methanolic extract of D. metel leaves could be used as potent therapeutic agent not only for treating metabolic diseases but also superficial chronic diabetic wounds.  相似文献   
23.
In this paper, we used green and hydrothermal methodology to prepare zinc oxide (ZnO) nanoflakes (NFs) with jute stick extract (J–ZnO NFs) as growth substrate. The prepared materials were characterized using different analytical techniques including ultraviolet–visible spectroscopy (UV–vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The characteristic absorption peak for ZnO NFs and J–ZnO NFs were observed from the UV–vis spectrum at 373 and 368 nm respectively. The hexagonal wurtzite crystal structure of ZnO NFs and J–ZnO NFs was confirmed by XRD analysis. FESEM and TEM analyses of synthesized J–ZnO NFs confirmed their NFs shape and collectively flower-like structure formation by the assembly of NFs of J–ZnO on cellulose of jute stick extract substrate. The FTIR analysis revealed the functional groups of jute stick extract biomolecules, mainly cellulose, are responsible for the formation of collectivel flower like J–ZnO NFs structure. The XPS analysis revealed the surface and chemical compositions (Zn, C, and O) of J–ZnO NFs. The photocatalytic performance of ZnO NFs and J–ZnO NFs samples was carried out by the degradation of methylene blue (MB) dye solution under UV light irradiation. The degradation efficiency of ZnO NFs and J–ZnO NFs was obtained 79 % and 89 %, respectively, for 5 h. Notably, the degradation efficiency of the J–ZnO NFs was 98 % after 8 h of irradiation, which is very inspiring. The both NFs exhibited first-order kinetics with MB photodegradation. We also examined the possible antibacterial activity of both samples against Escherichia coli (E. coli) pathogens, which demonstrated a significant result with a 17 mm and 19 mm zone of inhibition by ZnO NFs and J–ZnO NFs respectively.  相似文献   
24.
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.  相似文献   
25.
Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar “Fuji”, cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.  相似文献   
26.
Abstract

This work aimed at evaluating the prebiotic potential of the aqueous extract and crude polysaccharides from Agave sisalana boles by an in vitro screening. Crude polysaccharides were obtained from the aqueous bole extract by precipitation with acetone and resuspension in water. The liquid extract and the polysaccharide solution were then spray dried and submitted to thermal analysis and quantification of metabolites. Prebiotic activity was checked on probiotic strains belonging to the Lactobacillus genus using inulin, fructo-oligosaccharides, fructose and glucose as positive controls. The powder of A. sisalana bole extract, which has recently been identified as a rich source of inulin, exhibited higher potential of fermentation compared with crude polysaccharides.  相似文献   
27.
Platinum Nanoparticles (PtNPs) are synthesized from the Anbara fruit (Phoenix dactylifera L.) and are characterized using various spectroscopic analytical methods. These PtNPs were used to study the Hepatotoxic and Hepatoprotective effects on acute liver damage caused by CCl4 in Wister rats. Seventy-two rats of both sexes are divided into twelve groups and are treated with PtNPs and aqueous Anbara extract (AAE). Histopathological examinations were performed to identify the toxic effects on the vital organs of the rats. Hepatoprotective activity was monitored by observing the serobiochemical and hematological parameters and the intensity of hepatic marker enzymes alanine transferase (ALT), aspartate amino transferase (AST) and alkaline phosphatase (ALP) in the organs such as liver, intestine and kidney. Considerable experimental results were obtained when compared with the standard drug Silymarine. The PtNPs and AAE were proven to have protective activity of enzymes in the liver of Wister rats.  相似文献   
28.
A sensitive and reliable ultra‐high performance liquid chromatography coupled with tandem quadrupole mass spectrometry (UHPLC–MS/MS) method was developed for quantitation of plantamajoside in rat plasma. First, this study compared the pharmacokinetic properties of plantamajoside after oral administration of Plantago asiatica extract and pure plantamajoside in rat plasma with approximately the same dosage of 8.98 mg/kg. Second, chromatographic separation was performed on an Acquity HSS C18 column (50 × 2.1 mm, p.d.1.7 μm) with isocratic elution using methanol–water (80:20, v /v) as mobile phase at a flow rate of 0.25 mL/min. The calibration curves were linear over the range of 0.1–100 ng/mL for plantamajoside. At different time points (0, 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6 and 8 h) after administration, the concentrations of plantamajoside in plasma were measured and the main pharmacokinetic parameters were estimated. The study indicates that the pharmacokinetics of plantamajoside in rat plasma have significant differences between two groups.  相似文献   
29.
The chemokines (CXCL9, CXCL10 and CXCL11) and associated CXCR3 receptor are expressed during the inflammatory process from multiple sclerosis, atherosclerosis or organ transplantation resulting in the recruitment of lymphocytes leading to tissue damage. It is hypothesized that blocking of the ligand/CXCR3 receptor interaction has potential to provide opportunity for development of agents that would block tissue rejection. In this paper, four classes of natural product inhibitors (IC50 ranging 0.1–41 M) have been described that block the CXCR3 receptor interaction of IP-10 ligand. These include a cyclic thiopeptide (duramycin), polyketide glycosides (roselipins), steroidal glycosides (hypoglausin A and dioscin) and a novel alkyl pyridinium alkaloid that were isolated by bioassay-guided fractionation of the organic extracts derived from actinomycete, fungal, plant and marine sources and discovered using 125 I IP-10/CXCR3 binding assay. Duramycin was the most potent with an IC50 of 0.1 M. Roselipins 2A, 2B and 1A showed IC50 values of 14.6, 23.5, and 41 M, respectively. Diosgenin glycosides dioscin, hypoglaucin A and kallstroemin D exhibited IC50 values of 2.1, 0.47 and 3 M, respectively. A novel cyclic 3-alkyl pyridinium salt isolated from a sponge displayed a binding IC50 of 0.67 M.  相似文献   
30.
The aim of the article was to develop stable and safe eco-friendly microcapsules and evaluate their physicochemical properties and their efficiency to protect a jackfruit extract. Eco-friendly microcapsules were produced by ultrasound and spray drying using only three safe ingredients: sucrose ester (SE), miglyol and maltodextrin (DE = 10). Some physicochemical properties, particle morphology, FT-IR, differential scanning calorimetry and antiproliferative activity were determined for microcapsules loaded or not with the jackfuit extract. The results revealed that the encapsulation process by spray drying produced stable microcapsules, with adequate physicochemical and fluid properties for a powder product. The cell viability on the proliferation of M12.C3.F6 cell line was not affected by powder microcapsules without jackfruit extract, indicating that capsules are not toxic for these cells. However, microcapsules with jackfruit extract (100 μg/ml) were able to inhibit significantly the proliferation of M12.C3.F6 cells. These microcapsules can be used for the protection of different compounds sensitive to light, oxygen and/or heat and displaying a very low aqueous solubility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号