首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   201篇
  国内免费   272篇
化学   1370篇
晶体学   32篇
力学   4篇
综合类   20篇
数学   1篇
物理学   434篇
  2023年   21篇
  2022年   45篇
  2021年   51篇
  2020年   72篇
  2019年   66篇
  2018年   64篇
  2017年   59篇
  2016年   61篇
  2015年   58篇
  2014年   81篇
  2013年   125篇
  2012年   103篇
  2011年   101篇
  2010年   63篇
  2009年   67篇
  2008年   69篇
  2007年   82篇
  2006年   52篇
  2005年   50篇
  2004年   48篇
  2003年   55篇
  2002年   51篇
  2001年   56篇
  2000年   48篇
  1999年   47篇
  1998年   34篇
  1997年   30篇
  1996年   25篇
  1995年   32篇
  1994年   31篇
  1993年   21篇
  1992年   21篇
  1991年   16篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   11篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1976年   1篇
排序方式: 共有1861条查询结果,搜索用时 15 毫秒
21.
The different oxidation states of sulphur atom play a significant role on functional materials. In this work, a aryl-thioether and its sulphone substituted benzo[c][1,2,5]oxadiazole dyes were synthesized and utilized to determine thiol-containing amino acids. The result of selectivity experiments showed they detected the cysteine and homocysteine under physiological condition with negligible interference from other amino acids. In comparison to the thioether dye, the sulphone-based dye exhibited much faster response time for Cys and Hcy. However, the sulphone restricted its thiol-reactivity and bioimaging performance in living cells. By reducing the oxidation state of sulphur atom, we amazedly found that the sulfoxide-based dye still maintained high selectivity ultrafast response time for Cys/Hcy under physiological condition. It was worth mentioning that it also had high reactivity and good bioimaging performance that sulfone compounds did not have.  相似文献   
22.
总结了非平衡溶剂化新理论和在量子化学软件Q-Chem中基于含时密度泛函理论(TD-DFT)实现溶剂效应下计算电子吸收和发射光谱的数值解方法.采用该方法计算了染料敏化太阳能电池(DSSCs)中三苯胺型有机染料■在真空和乙腈溶剂中的电子结构与光谱性质,研究发现,π共轭桥上碳碳双键的个数和溶剂效应会促进光电转换.  相似文献   
23.
Currently, chemotherapy is one of the most important treatment modalities for malignant tumors in the clinic, however, it exhibits some shortcomings, such as poor selectivity, limited efficacy and serious adverse effects. Therefore, synergistic therapy and accurate drug delivery at tumor sites become a promising strategy for achieving tumor eradication. Herein, a smart NIR fluorescence imaging-guided nanoliposome was fabricated by encapsulating a chemotherapeutic drug(doxorubicin, DOX), liposomes(L) and a near-infrared(NIR) photosensitizer(CY) to form L@CY@DOX, which could realize enhanced therapeutic efficacy of chemo-PDT in cancer therapy(PDT=photodynamic therapy). L@CY@DOX can induce mitochondrial apoptosis and produce severe toxicity at the cellular level, and L@CY@DOX can enrich in the tumor site, which significantly induces tumor death. In vitro and in vivo studies demonstrated that L@CY@DOX exhibited great antitumor efficacy compared with each one of these monotherapies, indicating that the combination of chemotherapy and PDT possessed potential development prospects and is anticipated in clinical application.  相似文献   
24.
Luminogens with aggregation-induced emission(AIE)characteristics(or AIEgens)have been widely used in various applications due to their excellent luminescent properties in molecular aggregates and the solid state.A deep understanding of the AIE mechanism is critical for the rational development of AIEgens.In this work,the“state-crossing from a locally excited to an electron transfer state”(SLEET)model is employed to rationalize the AIE phenomenon of two(bi)piperidylanthracenes.According to the SLEET model,an electron transfer(ET)state is formed along with the rotation of the piperidyl group in the excited state of(bi)piperidylan-thracene monomers,leading to fluorescence quenching.In contrast,a bright state exists in the crystal and molecular aggregates of these compounds,as the intermolecular interactions restrict the formation of the dark ET state.This mechanistic understanding could inspire the deployment of the SLEET model in the rational designs of various functional AIEgens.  相似文献   
25.
Based on the functional properties of electrospun cellulose nanofibers(CNF), scientists are showing substantial interest to enhance the aesthetic properties. However, the lower color yield has remained a big challenge due to the higher surface area of nanofibers. In this study, we attempted to improve the color yield properties of CNF by the pad-steam dyeing method. Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA) nanofibers. Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized. SEM images revealed smooth morphology with an increase in the average diameter of nanofibers. FTIR results showed no change in the chemical structure after dyeing of CNF. Color fastness results demonstrated excellent ratings for reactive dyes, which indicate good dye fixation properties and no color loss during the washing process. The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF, which can be utilized for functional garments, such as breathable raincoats and disposable face masks.  相似文献   
26.
A chalcone series (3a–f) with electron push–pull effect was synthesized via a one-pot Claisen–Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512–567 nm with mega-stokes shift (∆λ = 93–139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a–f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 μM) than normal cells (IC50 value >100 μM). Furthermore, the antimicrobial properties of chalcones 3a–f were investigated. Interestingly, 3a–f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10–0.60 mg/mL (375–1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.  相似文献   
27.
28.
An electrochemical biosensor capable of indirect detection of DNA damage induced by any one of the three endocrine-disrupting compounds (EDCs) – bisphenol A (BPA), 4-nonylphenol (NP) and 4-t-octylphenol (OP), has been researched and developed. The methylene blue (MB) dye was used as the redox indicator. The glassy carbon electrode (GCE) was modified by the assembled dsDNA/graphene oxide-chitosan/gold nano-particles to produce a dsDNA/GO-CS/AuNPs/GCE sensor. It was characterized with the use of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and scanning electron microscopy (SEM) techniques. The loading/release of the MB dye by the dsDNA/GO-CS/AuNPs film was investigated, and the results showed that the process was reversible. Based on this, the sensor was used to measure the difference between the loading capabilities of intact and damaged dsDNA in the films. The sensor was then successfully applied to detect DNA damage electrochemically. The differential pulse voltammetry (DPV) peak current ratio for MB, observed before and after DNA damage, increased linearly in the presence the BPA, NP or OP compounds; the treatment range was 10–60 min, and the respective damage rates were 0.0069, 0.0044 and 0.0031 min−1, respectively. These results were confirmed by the binding constants: 2.09 × 106 M−1 (BPA-DNA), 1.28 × 106 M−1 (NP-DNA) and 9.33 × 105 M−1 (OP-DNA), all of which were obtained with the use of differential pulse stripping voltammetry (DPSV).  相似文献   
29.
It is generally believed that silver or silver‐based compounds are not suitable counter electrode (CE) materials for dye‐sensitized solar cells (DSSCs) due to the corrosion of the I?/I3? redox couple in electrolytes. However, Ag2S has potential applications in DSSCs for catalyzing I3? reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3? to I? in DSSCs. The DSSC consisting of Ag2S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2S CE as a promising alternative to Pt CE in DSSCs.  相似文献   
30.
采用聚焦微波辅助提取(FMAE)结合溴麝香草酚蓝分光光度法测定农吉利中总生物碱。粒径为0.180 mm的样品,以甲醇为溶剂,料液比为1比25,在微波功率中火条件下提取50min。在pH 7.2的磷酸二氢钾-氢氧化钠缓冲溶液中,提取得到的生物碱与溴麝香草酚蓝酸性染料形成缔合物,用三氯甲烷萃取后,在最大吸收波长417nm处测量其吸光度。总生物碱的质量浓度在0.25~250mg·L-1范围内呈线性,方法的检出限(3S/N)为1.5mg·L-1。应用该方法测定农吉利药材中总生物碱,加标回收率为105%,测定值的相对标准偏差(n=6)小于3.0%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号