首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   55篇
  国内免费   189篇
化学   963篇
晶体学   10篇
力学   3篇
综合类   4篇
物理学   39篇
  2023年   7篇
  2022年   11篇
  2021年   38篇
  2020年   27篇
  2019年   23篇
  2018年   31篇
  2017年   32篇
  2016年   36篇
  2015年   30篇
  2014年   44篇
  2013年   96篇
  2012年   40篇
  2011年   46篇
  2010年   33篇
  2009年   48篇
  2008年   53篇
  2007年   51篇
  2006年   43篇
  2005年   58篇
  2004年   41篇
  2003年   48篇
  2002年   34篇
  2001年   19篇
  2000年   19篇
  1999年   7篇
  1998年   9篇
  1997年   12篇
  1996年   3篇
  1995年   17篇
  1994年   17篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1019条查询结果,搜索用时 15 毫秒
21.
22.
We herein demonstrate that the amide base generated in situ from CsF and N(TMS)3 catalyzes the deprotonative coupling reactions of terminal alkynes with polyfluoroarenes, wherein mono- and dialkynylations occur efficiently for penta- and hexafluorobenzenes, respectively. Tetraalkynylated products could also be synthesized from dialkynylated compounds.  相似文献   
23.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   
24.
Aminocarbonylation of aryl halides, homogeneously catalysed by palladium, is an efficient method that can be employed for obtaining amides for pharmaceutical and synthetic applications. In this work, palladium (II) complexes containing P^N ligands were studied as catalysts in the aminocarbonylation of iodobenzene in the presence of diethylamine. Two types of systems were used: a palladium (II) complex formed in situ; and one prepared prior to the catalytic reaction. In general, the palladium complexes studied achieved high conversions in an average reaction time of less than 2 hr, which is less than that for the standard system (Pd (II)/PPh3) used. The pre‐synthesized complexes were faster than their in situ counterparts, as the latter require an induction time to form the Pd/P^N species. The structure and electronic properties of the ligand P^N can influence both the activity and the selectivity of the reaction, stabilizing the acyl‐palladium intermediates formed in a better manner.  相似文献   
25.
Catalytic allylic γ‐substitution with Morita‐Baylis‐Hillman (MBH) adducts for creating a new family of unsymmetrical dicarbonyl compounds was presented in this work, in which a variety of allylated amide products were achieved in good yields and high regioselectivity with excellent linear‐to‐branched ratios. Especially, it was found that the Pd/HZNU‐Phos complex exhibited remarkably high activity (with a TON up to 16800) in this transformation between dicarbonyl amides and MBH adducts. In addition, the possibly multisite interaction between multifunctional Pd/HZNU‐Phos catalyst system and substrates might responsible for its exceptionally high efficiency in this reaction.  相似文献   
26.
gem-Heteroatom-substituted fluoroalkenes have received little attention despite their great potential in medicinal chemistry or in fine chemistry. Indeed, due to the electronic and steric similarity between the fluoroalkene moiety and the amide bond as well as the high strength of the carbon-fluorine bond, these gem-heteroatom-substituted fluoroalkenes could be envisioned as stable mimics of various important organic functions, such as phosphates, carbamates, S-thiocarbamates and ureas. We present herein an overview describing the syntheses over the last decade of heteroatom-substituted fluoroalkenes in geminal position. This review will be divided into several sections covering each the common following heteroatom: oxygen-, nitrogen-, sulfur-, phosphorus-, boron- and silicon-substituted fluoroalkenes.  相似文献   
27.
Composition control of aromatic poly(thioester‐amide) was examined by the reaction‐induced phase separation during polymerization of S‐acetyl‐4‐mercaptobenzoic acid (AMBA) and p‐acetylaminobenzoic acid (AABA) in aromatic solvent. The poly(thioester‐amide)s were obtained as precipitates and their yields became lower at the middle range of the content of AMBA in feed (χf). The contents of p‐mercaptobenzoyl (MB) moiety (χp) in the precipitates prepared without shearing were in good agreement with the χf values. In contrast to this, the χp values of the precipitates prepared at χf of 50–70 mol % under shearing were much lower than the χf values. The reaction rate of AMBA increased with shearing, whereas that of AABA was unchanged by shearing. This shearing effect on the reaction rates accelerated to form the homo‐oligomers. The solubility of MB oligomers enhanced by shearing, whereas that of p‐benzamide oligomers did not enhance owing to the strong interaction through hydrogen bonding. The MB oligomers were inhibited to be precipitated, resulting in the lower χp values than the χf values. The composition could be controlled by the application of the shearing to the heterogeneous polymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4301–4308  相似文献   
28.
Polyamides (PA) constitute one of the most important classes of polymeric materials and have gained strong position in different areas, such as textiles, fibers, and construction materials. Whereas most PA are synthesized by step‐growth polycondensation, PA 6 is synthesized by ring opening polymerization (ROP) of ε‐caprolactam (ε‐CLa). The most popular ROP methods involve the use of alkaline metal catalyst difficult to handle at large scale. In this article, we propose the use of organic acids for the ROP of ε‐CLa in bulk at 180 °C (below the polymer's melting point). Among evaluated organic acids, sulfonic acids were found to be the most effective for the polymerization of ε‐CLa , being the Brønsted acid ionic liquid: 1‐(4‐sulfobutyl)?3‐methylimidazolium hydrogen sulfate the most suitable due to its higher thermal stability. End‐group analysis by 1H nuclear magnetic resonance and model reactions provided mechanistic insights and suggested that the catalytic activity of sulfonic acids was a function of not only the acid strength, but of the nucleophilic character of conjugate base as well. Finally, the ability of sulfonic acid to promote the copolymerization of ε‐CLa and ε‐caprolactone is demonstrated. As a result, poly(ε‐caprolactam‐co‐ε‐caprolactone) copolymers with considerably randomness are obtained. This benign route allows the synthesis of poly(ester amide)s with different thermal and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2394–2402  相似文献   
29.
Copper supported on magnetite nanoparticles modified with environmentally friendly ligand tricine was devised for synthesis of acetamides via C–C oxidative cleavage of ketones with amines. The catalyst was characterized using different techniques, including Fourier transform infrared, X-ray diffraction, scannin electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, and energy dispersive x-ray spectroscopy. The protocol showed relatively high yields of acetamide products. Furthermore, the magnetic recovery of the catalyst rendered the overall process fast and efficient. It was used in the reaction for six consecutive cycles with negligible loss of catalytic activity. This research is the first report of application of magnetic nanocatalysts for synthesis of acetamides from ketones of low activity through a C–C bond cleavage strategy.  相似文献   
30.
In this study, we investigated the CO2‐capture/release behavior of the polystyrene‐bearing cyclic amidine pendant groups, which was synthesized via free radical polymerization of HCl salt of the corresponding styrene monomer followed by neutralization. For comparison, we also prepared the polystyrene bearing N‐formyl‐1,3‐propanediamine pendant groups through the hydrolysis of the cyclic amidine group by treatment with an alkaline solution. First, we examined the CO2‐capture/release behaviors of the amidine and amine monomers in aqueous solution in terms of conductivity. The conductivity of a wet DMSO solution of the amidine monomer increased upon CO2 bubbling at 25 °C and reached a stationary value of about 11 mS/m, which indicated the formation of the bicarbonate salt. Conversely, the conductivity decreased to its original value upon N2 bubbling at 50 °C, reflecting the complete release of the trapped CO2 molecules. Both solutions showed the changes in the conductivity with quick responses, and no appreciable difference was observed between them. We then investigated the CO2‐capture/release behaviors of the amidine and amine polymers, by taking advantage of the binary system with polyethylene glycol, and found that the binary system with the amidine polymer captured and released CO2 more efficiently than that with the amine polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2025–2031  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号